
Counterexample Guided Program Repair Using Zero-Shot Learning and
MaxSAT-based Fault Localization

Pedro Orvalho1*, Mikoláš Janota2, Vasco M. Manquinho3

1Department of Computer Science, University of Oxford, Oxford, UK
2CIIRC, Czech Technical University in Prague, Czechia

3INESC-ID, IST, Universidade de Lisboa, Portugal
pedro.orvalho@cs.ox.ac.uk, mikolas.janota@cvut.cz, vasco.manquinho@tecnico.ulisboa.pt

Abstract

Automated Program Repair (APR) for introductory program-
ming assignments (IPAS) is motivated by the large number
of student enrollments in programming courses each year.
Since providing feedback on programming assignments re-
quires substantial time and effort from faculty, personal-
ized automated feedback often involves suggesting repairs
to students’ programs. Symbolic semantic repair approaches,
which rely on Formal Methods (FM), check a program’s ex-
ecution against a test suite or reference solution, are effec-
tive but limited. These tools excel at identifying buggy parts
but can only fix programs if the correct implementation and
the faulty one share the same control flow graph. Conversely,
Large Language Models (LLMS) are used for program repair
but often make extensive rewrites instead of minimal adjust-
ments. This tends to lead to more invasive fixes, making it
harder for students to learn from their mistakes. In summary,
LLMS excel at completing strings, while FM-based fault lo-
calization excel at identifying buggy parts of a program.
In this paper, we propose a novel approach that combines the
strengths of both FM-based fault localization and LLMS, via
zero-shot learning, to enhance APR for IPAS. Our method
uses MaxSAT-based fault localization to identify buggy parts
of a program, then presents the LLM with a program sketch
devoid of these buggy statements. This hybrid approach fol-
lows a Counterexample Guided Inductive Synthesis (CEGIS)
loop to iteratively refine the program. We ask the LLM to
synthesize the missing parts, which are then checked against
a test suite. If the suggested program is incorrect, a counterex-
ample from the test suite is fed back to the LLM for revised
synthesis. Our experiments on 1,431 incorrect student pro-
grams show that our counterexample guided approach, using
MaxSAT-based bug-free program sketches, significantly im-
proves the repair capabilities of all six evaluated LLMS. This
method allows LLMS to repair more programs and produce
smaller fixes, outperforming other configurations and state-
of-the-art symbolic program repair tools.

Code — https://doi.org/10.5281/zenodo.14517771

Introduction
Every year, thousands of students enroll in programming-
oriented courses. With the rapid growth of Computer Sci-

*Part of this work was conducted at INESC-ID, IST, UL.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ence courses, providing personalized and timely feedback
on introductory programming assignments (IPAS) and soft-
ware projects has become a significant challenge, requiring
substantial time and effort from faculty (Orvalho, Janota,
and Manquinho 2024c, 2022b).

Automated Program Repair (APR) has emerged as a
promising solution to this challenge, aiming to deliver au-
tomated, comprehensive, and personalized feedback to stu-
dents about their programming errors (Gulwani, Radicek,
and Zuleger 2018; Ahmed et al. 2022; Wang, Singh, and
Su 2018; Hu et al. 2019). Traditional semantic APR tech-
niques based on Formal Methods (FM), while providing
high-quality fixes, are often slow and may struggle when
the correct implementation diverges significantly from the
erroneous one (Contractor and Rivero 2022). These APR ap-
proaches do not guarantee minimal repairs, as they align an
incorrect submission with a correct implementation for the
same IPA. If the alignment is not possible, these tools return
a structural mismatch error, leaving the program unrepaired.
In the past decade, there has been a surge in Machine Learn-
ing (ML) techniques for APR (Gupta et al. 2017; Mesbah
et al. 2019; Gupta, Kanade, and Shevade 2019; Yasunaga
and Liang 2020; Rolim et al. 2017; Pu et al. 2016; Bhatia,
Kohli, and Singh 2018; Orvalho et al. 2023). ML-based ap-
proaches require multiple correct implementations to gener-
ate high-quality repairs, and need considerable time and re-
sources to train on correct programs. While these approaches
generate repairs more quickly, they often produce imprecise
and non-minimal fixes (Wang, Singh, and Su 2018).

More recently, Large Language Models (LLMS) trained
on code (LLMCS) have shown great potential in generating
program fixes (Joshi et al. 2023; Xia, Ding, and Zhang 2023;
Jin et al. 2023; Wei, Xia, and Zhang 2023; Fan et al. 2023;
Xia, Wei, and Zhang 2023; Zhang et al. 2024; Phung et al.
2023). LLM-based APR can be performed using zero-shot
learning (Xia and Zhang 2022), few-shot learning (Zhang
et al. 2024) or fine-tuned models (Jin et al. 2023). Fine-
tuned models are the most commonly used, where the model
is trained for a specific task. Conversely, zero-shot learn-
ing refers to the ability of a model to correctly perform a
task without having seen any examples of that task during
training. Few-shot learning refers to the LLMS’s ability to
perform tasks correctly with only a small number of exam-
ples provided. Furthermore, the ability to generalize using

zero or few-shot learning enables LLMS to handle a wide
range of tasks without the need for costly retraining or fine-
tuning. Nonetheless, few-shot learning can lead to larger
fixes than necessary, as it is based on a limited number of
examples. LLMS do not guarantee minimal repairs and typ-
ically rewrite most of the student’s implementation to fix it,
rather than making minimal adjustments, making their fixes
less efficient and harder for students to learn from.

In this paper, we propose a novel approach that com-
bines the strengths of both FM and LLMS to enhance APR
of IPAS via zero-shot learning. Our method involves using
MaxSAT-based fault localization to identify the set of min-
imal buggy parts of a program and then presenting an off-
the-self LLM with a program sketch devoid of these buggy
statements. This hybrid approach follows a Counterexample
Guided Inductive Synthesis (CEGIS) loop (Solar-Lezama
et al. 2005) to iteratively refine the program. We provide the
LLM with a bug-free program sketch and ask it to synthe-
size the missing parts. After each iteration, the synthesized
program is checked against a test suite. If the program is in-
correct, a counterexample from the test suite is fed back to
the LLM, prompting a revised synthesis.

Our experiments with 1431 incorrect student programs
reveal that our counterexample guided approach, utiliz-
ing MaxSAT-based bug-free program sketches, significantly
boosts the repair capabilities of all six evaluated LLMS.
This method enables LLMS to repair more programs and
produce superior fixes with smaller patches, outperform-
ing both other configurations and state-of-the-art symbolic
program repair tools (Gulwani, Radicek, and Zuleger 2018;
Ahmed et al. 2022).

In summary, this paper makes the following contributions:
• We tackle the Automated Program Repair (APR) prob-

lem using an LLM-Driven Counterexample Guided In-
ductive Synthesis (CEGIS) approach;

• We employ MaxSAT-based Fault Localization to guide
and minimize LLMS’ patches to incorrect programs by
feeding them bug-free program sketches;

• Experiments show that our approach enables all six eval-
uated LLMS to fix more programs and produce smaller
patches than other configurations and symbolic tools.

Motivation
Consider the program presented in Listing 1, which aims
to determine the maximum among three given numbers.
However, based on the input-output test suite T = {t0 =
((1, 2, 3), 3); t1 = ((6, 2, 1), 6); t2 = ((−1, 3, 1), 3); }, the
program is buggy as its output differs from the expected
results. The set of minimal faulty lines in this program in-
cludes lines 4 and 8, as these two if conditions are incorrect
according to the test suite. A good way to provide personal-
ized feedback to students on their IPAS is to highlight these
two buggy lines. However, it is essential to check these faults
by fixing the program and evaluating it against the test suite.

Using traditional Automated Program Repair (APR) tools
for IPAS based on Formal Methods, such as CLARA (Gul-
wani, Radicek, and Zuleger 2018) or VERIFIX (Ahmed et al.
2022), the program in Listing 1 cannot be fixed within

90 seconds. CLARA takes too long to compute a ‘minimal’
repair by considering several correct implementations for
the same IPA, while VERIFIX returns a compilation error.
Conversely, using state-of-the-art LLMS trained for coding
tasks (LLMCS), GRANITE (Mishra 2024) or CODEGEM-
MA (Zhao 2024), would involve providing the description of
the programming assignment and some examples of input-
output tests. Even with these features, neither LLM could
fix the buggy program in Listing 1 within 90 seconds when
repeatedly testing and refining their fixes. If the lecturer’s
reference implementation shown in Listing 2 is suggested
as a reference in the prompt, both LLMS simply copy the
correct program, ignoring instructions not to do so.

Hence, symbolic approaches demand an excessive
amount of time to produce an answer, and LLMS, while
fast, often produce incorrect fixes. A promising strategy to
provide feedback to students on IPAS is to combine the
strengths of both approaches. MaxSAT-based Fault local-
ization (Jose and Majumdar 2011a; Ignatiev et al. 2019)
can rigorously identify buggy statements, which can then be
highlighted in the LLM prompt to focus on the specific parts
of the program that need fixing. Listing 3 shows an example
of a program sketch, which is a partially incomplete program
where each buggy statement from the original incorrect pro-
gram in Listing 1 is replaced with a @ HOLE @. Instructing
the LLMS to complete this incomplete program allows both
GRANITE and CODEGEMMA to fix the buggy program in a
single interaction, returning the program in Listing 4.

Preliminaries
This section provides definitions used throughout the paper.

Synthesis Problem. For a given program’s specification
S (e.g., input-output examples), G a context-free grammar
(CFG), and O be the semantics for a particular Domain-
specific language (DSL), the goal of program synthesis is
to infer a program P such that (1) the program is produced
by G, (2) the program is consistent with O and (3) P is con-
sistent with S (Orvalho et al. 2019).

Semantic Program Repair. Given (T,G,O, P), let T be
a set of input-output examples (test suite), G be a grammar,
O be the semantics for a particular Domain-specific lan-
guage, and P be a syntactically well-formed program (i.e.
sets of statements, instructions, expressions) consistent with
G and O but semantically erroneous for at least one of the
input-output tests i.e., ∃{tiin, tiout} ∈ T : P (tiin) ̸= tiout.
The goal of Semantic Program Repair is to find a pro-
gram Pf by semantically change a subset S1 of P ’s state-
ments (S1 ⊆ P) for another set of statements S2 consis-
tent with G and O, such that, Pf = ((P \ S1) ∪ S2) and
∀{tiin, tiout} ∈ T : Pf (t

i
in) = tiout.

Counterexample Guided Inductive Synthesis (CEGIS).
CEGIS is an iterative algorithm commonly used in Pro-
gram Synthesis and Formal Methods to construct programs
or solutions that satisfy a given specification (Abate et al.
2018; Jha et al. 2010; Solar-Lezama et al. 2005). CEGIS
consists of two steps: the synthesis step and the verifica-
tion step. Given the specification of the desired program,

Listing 1 Semantically incorrect program. Faulty lines: {4,8}.

1 int main(){ // finds maximum of 3 numbers
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t) //fix: f >= s
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s) //fix: t > f and t > s
9 printf("%d",t);

10 return 0;
11 }

Listing 2 Reference implementation.

1 int main() {
2 int m1,m2,m3,m;
3 scanf("%d%d%d",&m1,&m2,&m3);
4 m = m1 > m2 ? m1 : m2;
5 m = m3 > m ? m3 : m;
6 printf("%d\n", m);
7 return 0;
8 }

Listing 3 Program sketch with holes.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10 return 0;
11 }

Listing 4 GRANITE’s fix using the program sketch.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f >= s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else
9 printf("%d",t);

10 return 0;
11 }

the inductive synthesis procedure generates a candidate pro-
gram. Next, the candidate program P is passed to the ver-
ification step, which checks whether P satisfies all possi-
ble inputs’ specifications. Otherwise, the Decider produces
a counterexample c from the satisfying assignment, which is
then added to the set of inputs passed to the synthesizer, and
the loop repeats. The synthesis engine refines its hypothesis
using this counterexample to avoid similar mistakes in sub-
sequent iterations. This iterative loop (comprising candidate
generation, verification, counterexample generation, and re-
finement) continues until a correct candidate is found that
satisfies all given specifications and constraints.

Maximum Satisfiability (MaxSAT). The Boolean Satisfi-
ability (SAT) problem is the decision problem for proposi-
tional logic (Biere et al. 2009). A propositional formula in
Conjunctive Normal Form (CNF) is a conjunction of clauses
where each clause is a disjunction of literals. The Maximum
Satisfiability (MaxSAT) problem is an optimization version
of SAT, i.e., the goal is to find an assignment that maximizes
the number of satisfied clauses in a CNF formula (Orvalho,
Manquinho, and Martins 2023).

Formula-based Fault Localization (FBFL). Given a
faulty program and a test suite with failing test cases,
formula-based fault localization (FBFL) methods encode
the localization problem into an optimization problem to
identify a minimal set of faulty statements (diagnoses)
within a program. FBFL tools leverage MaxSAT and the
theory of Model-Based Diagnosis (MBD) (Reiter 1987;
Jose and Majumdar 2011b; Marques-Silva et al. 2015; Ig-
natiev et al. 2019; Orvalho, Janota, and Manquinho 2024b).
Moreover, these FBFL tools enumerate all diagnoses of a
MaxSAT formula corresponding to bug locations.

Fault
Localizer

Prompt
Generator

Specs + FL

Code
Generator
(LLMS)

Prompt

Decider

Feedback + Counterexample

Candidate Program

IPA Spec.
+

Buggy
Program

Fixed
Program

Figure 1: Counterexample Guided Automated Repair.

Program Sketch. A program sketch is a partially incom-
plete program where all buggy statements are replaced by
placeholders, identified as “@ HOLES @”. These place-
holders indicate parts of the program that need to be syn-
thesized to ensure the program complies with a given speci-
fication (e.g., a test suite). Listing 3 shows a program sketch.

Abstract Syntax Tree (AST). An AST is a syntax tree
in which each node represents an operation, and the node’s
children represent the arguments of the operation for a
given programming language described by a Context-Free
Grammar. An AST depicts a program’s grammatical struc-
ture (Aho, Sethi, and Ullman 1986).

Counterexample Guided Automated Repair
Our approach combines the strengths of both Formal Meth-
ods (FM) and LLMS to enhance Automated Program Repair
(APR). Firstly, we employ MaxSAT-based fault localization
techniques to rigorously identify the minimal set of buggy
parts of a program (Ignatiev et al. 2019; Orvalho, Janota,
and Manquinho 2024b). Afterwards, we leverage LLMS to

quickly synthesize the missing parts in the program sketch.
Finally, we use a counterexample from the test suite to guide
LLMS in generating patches that make the synthesized pro-
gram compliant with the entire test suite, thus completing
the repair. The rationale of our approach follows a Coun-
terexample Guided Inductive Synthesis (CEGIS) (Solar-
Lezama et al. 2006) loop to iteratively refine the program.
Figure 1 provides an overview of our APR approach. The
input is a buggy program and the specifications for an intro-
ductory programming assignment (IPA), including its de-
scription, a test suite, and the lecturer’s reference solution.
We start by using MaxSAT-based fault localization tech-
niques to identify the program’s minimal set of faulty state-
ments. Next, the prompt generator builds a prompt based on
the specifications of the IPA and a bug-free program sketch
reflecting the localized faults, then feeds this information
to the LLM. The LLM generates a program based on the
provided prompt. After each iteration, the Decider module
evaluates the synthesised program against a test suite. If the
program is incorrect, a counterexample chosen from the test
suite is sent to the prompt generator, which then feeds this
counterexample to the LLM to prompt a revised synthesis.

Prompts. The prompts fed to LLMS can contain various
types of information related to the IPA. The typical infor-
mation available in every programming course includes the
description of the IPA, the test suite to check the students’
submissions corresponding to the IPA’s specifications, and
the lecturer’s reference implementation. The syntax used in
our prompts is similar to that in other works on LLM-driven
program repair (Joshi et al. 2023). We have evaluated several
types of prompts. Basic prompts are the simplest prompts
that can be fed to an LLM without additional computation,
including all the programming assignment’s basic informa-
tion. An example of such a prompt is shown below:

Fix all semantic bugs in the buggy program
below. Modify the code as little as possible.
Do not provide any explanation.

Problem Description
Write a program that determines and
prints the largest of three integers
given by the user.

Test Suite
#input: 6 2 1
#output: 6
// The other input-output tests

Reference Implementation (Do not copy
this program) <c> #
```c
int main(){

// Reference Implementation
}```

### Buggy Program <c> ###
```c
int main(){

// Buggy program from Listing 1
}```

Fixed Program <c>
```c

In order to incorporate information about the faults local-
ized in the program using MaxSAT-based fault localization,
we utilized two different types of prompts: (1) FIXME anno-
tations and (2) program sketches. FIXME annotated prompts
are prompts where each buggy line identified by the fault lo-
calization tool is marked with a /* FIXME */ comment.
These prompts are quite similar to the basic prompt de-
scribed previously, with the primary differences being the
annotations in the buggy program and the first command
given to the LLMS, which is modified as follows:
Fix all buggy lines with '/* FIXME */'
comments in the buggy program below.

In the second type of prompt, to address program repair
as a string completion problem, we evaluated the use of
prompts where the buggy program is replaced by an incom-
plete program (program sketch), with each line identified as
buggy by our fault localization module replaced by a hole.
The command given to the LLMS is now to complete the in-
complete program. Consequently, the sections ‘Buggy Pro-
gram’ and ‘Fixed Program’ are replaced by ‘Incomplete Pro-
gram’ and ‘Complete Program’, respectively, as follows:
Complete all the '@ HOLES N @' in the
incomplete program below.
// ...
### Incomplete Program <c> ###
// ...
### Complete Program <c> ###

Feedback. If the candidate program generated by the
LLM is not compliant with the test suite, this feedback is
provided to the LLM in a new message through iterative
querying. This new prompt indicates that the LLM’s previ-
ous suggestion to fix the buggy program was incorrect and
provides a counterexample (i.e., an IO test) where the sug-
gested fixed program produces an incorrect output. Hence,
we provide the LLM with a feedback prompt similar to:
### Feedback ###
Your previous suggestion was incorrect!
Try again. Code only. Provide no explanation.
### Counterexample ###
#input: 6 2 1
#output: 6

### Fixed Program <c> ###
```c

Experimental Results
The goal of our evaluation is to answer the following re-
search questions: RQ1. How effective are state-of-the-art
(SOTA) LLMS in repairing introductory programming as-
signments (IPAS) compared to different SOTA semantic
repair approaches? RQ2. How do different prompt con-
figurations impact the performance of LLMS? RQ3. How
does FM-based fault localization impact LLM-driven APR?
RQ4. How helpful is it to provide a reference implemen-
tation for the same IPA to the LLMS? RQ5. What is the
performance impact of using a Counterexample Guided ap-
proach in LLM-driven APR?

Experimental Setup. All LLMS were run using NVIDIA
RTX A4000 graphics cards with 16GB of memory on an In-
tel(R) Xeon(R) Silver 4130 CPU @ 2.10GHz with 48 CPUs
and 128GB RAM. All the experiments related to the pro-
gram repair tasks were conducted on an Intel(R) Xeon(R)
Silver computer with 4210R CPUs @ 2.40GHz, using a
memory limit of 10GB and a timeout of 90 seconds.

Evaluation Benchmark. We evaluated our work using
C-PACK-IPAS (Orvalho, Janota, and Manquinho 2024a),
which consists of 1431 semantically incorrect student C pro-
grams that compile successfully but fail at least one test.

Large Language Models (LLMS). In our experiments,
we used only open-access LLMS available on Hugging
Face (HuggingFace 2024) with approximately 7 billion pa-
rameters for three primary reasons. Firstly, closed-access
models like Chat-GPT are cost-prohibitive and raise con-
cerns over student data privacy. Secondly, models with a
very large number of parameters (e.g., 70B) need signif-
icant computational resources, such as GPUs with higher
RAM capacities, and take longer to generate responses,
which is unsuitable for a classroom setting. Thirdly, we
used these off-the-shelf LLMS to evaluate the publicly avail-
able versions without fine-tuning them. This approach en-
sures that the LLMS used in this paper are available to any-
one without investing time and resources into fine-tuning
these models. Thus, we evaluated six different LLMS for
this study through iterative querying. Three of these models
are LLMCS, i.e., LLMS fine-tuned for coding tasks: IBM’s
GRANITE (Mishra 2024), Google’s CODEGEMMA (Zhao
2024) and Meta’s CODELLAMA (Rozière 2023). The other
three models are general-purpose LLMS not specifically tai-
lored for coding tasks: Google’s GEMMA (Mesnard 2024),
Meta’s LLAMA3 (latest version of the LLAMA family (Tou-
vron 2023)) and Microsoft’s PHI3 (Abdin 2024).

We selected specific variants of each model to optimize
their performance for our program repair tasks. For Meta’s
LLAMA3, we utilized the 8B-parameter instruction-tuned
variant. This model is designed to follow instructions more
accurately, making it suitable for a range of tasks, includ-
ing program repair. For CODELLAMA, we used the 7B-
parameter instruct-tuned version, which is specifically de-
signed for general code synthesis and understanding, mak-
ing it highly effective for coding tasks. We employed GRA-
NITE model with 8B-parameters, fine-tuned to respond to
coding-related instructions. For PHI3, we opted for the mini
version, which has 3.8B-parameters and a context length
of 128K. This smaller model is efficient yet capable of
handling extensive context, making it practical for educa-
tional settings. For GEMMA, we used the 7B-parameter
instruction-tuned version, optimized to follow detailed in-
structions. Lastly, for CODEGEMMA, we selected the 7B-
parameter instruction-tuned variant, designed specifically
for code chat and instruction, enhancing its capability to
handle programming-related queries and tasks. To fit all
LLMS into 16GB GPUs, we used model quantization of
4bit. Moreover, all LLMS were run using Hugging Face’s
Pipeline architecture. By using these different LLMS, we
aimed to balance computational efficiency with the ability

to effectively generate and refine code, facilitating a practi-
cal APR approach in an educational environment.

Fault Localization (FL). We used CFAULTS (Orvalho,
Janota, and Manquinho 2024b) which is a formula-based FL
tool, that pinpoints bug locations within the programs. It ag-
gregates all failing test cases into a unified MaxSAT formula.

Evaluation
To assess the effectiveness of the program fixes generated by
the LLMS under different prompt configurations, we used
two key metrics: the number of programs successfully re-
paired and the quality of the repairs. For assessing the patch
quality, we use the Tree Edit Distance (TED) (Tai 1979;
Zhang and Shasha 1989) to compute the distance between
the student’s buggy program and the fixed program returned
by the LLMS. TED computes the structural differences be-
tween two Abstract Syntax Trees (ASTS) by calculating the
minimum number of edit operations (i.e., insertions, dele-
tions, and substitutions) needed to transform one AST into
another. Based on this metric for measuring program dis-
tances, we computed the distance score, defined by Equa-
tion 1. This score aims to identify and penalize LLMS that
replace the buggy program with the reference solution rather
than fixing it. The distance score is zero when the TED of
the original buggy program (To) to the program suggested
by the LLM (Tf) is the same as the TED of the reference
solution (Tr) to To. Otherwise, it penalizes larger fixes than
necessary to align the program with the correct solution.

ds(Tf , To, Tr) = max
(
0, 1− TED(Tf , To)

TED(Tr, To)

)
(1)

Baseline. We used two state-of-the-art traditional seman-
tic program repair tools for IPAS as baselines: VERI-
FIX (Ahmed et al. 2022) and CLARA (Gulwani, Radicek,
and Zuleger 2018). VERIFIX employs MaxSMT to align a
buggy program with a reference implementation provided
by the lecturer, while CLARA clusters multiple correct im-
plementations and selects the one that produces the small-
est fix when aligned with the buggy program. Both tools re-
quire an exact match between the control flow graphs (e.g.,
branches, loops) and a bijective relationship between the
variables; otherwise, they return a structural mismatch error.
VERIFIX was provided with each buggy program, the refer-
ence implementation, and a test suite. CLARA was given all
correct programs from different academic years to generate
clusters for each IPA. Within a 90-second time limit, CLA-
RA repairs 495 programs (34.6%), times out without pro-
ducing a repair on 154 programs (10.8%), and fails to repair
738 programs (54.7%). In comparison, VERIFIX repairs 91
programs (6.3%), reaches the time limit on 0.6%, and fails
to repair 1338 programs (93.5%). The main reason for these
failures is that both tools rely on structure mismatch errors.

Table 1 presents the number of programs successfully
repaired by each LLM under various configurations. The
row labeled Portfolio represents the best possible out-
comes by selecting the optimal configuration for each pro-
gram across all LLMS. Meanwhile, Portfolio column

Configurations without access to Reference Implementations

LLMS De-TS De-TS-CE FIXME De-TS FIXME De-TS-CE Sk De-TS Sk De-TS-CE Portfolio
(All Configurations)

CodeGemma 597 (41.7%) 606 (42.3%) 592 (41.4%) 601 (42.0%) 682 (47.7%) 688 (48.1%) 823 (57.5%)
CodeLlama 492 (34.4%) 500 (34.9%) 481 (33.6%) 463 (32.4%) 573 (40.0%) 561 (39.2%) 712 (49.8%)

Gemma 496 (34.7%) 492 (34.4%) 446 (31.2%) 444 (31.0%) 532 (37.2%) 534 (37.3%) 670 (46.8%)
Granite 626 (43.7%) 624 (43.6%) 566 (39.6%) 583 (40.7%) 691 (48.3%) 681 (47.6%) 846 (59.1%)
Llama3 564 (39.4%) 590 (41.2%) 535 (37.4%) 557 (38.9%) 578 (40.4%) 591 (41.3%) 851 (59.5%)

Phi3 494 (34.5%) 489 (34.2%) 460 (32.1%) 474 (33.1%) 547 (38.2%) 535 (37.4%) 621 (43.4%)

Portfolio
(All LLMS) 842 (58.8%) 846 (59.1%) 796 (55.6%) 820 (57.3%) 900 (62.9%) 907 (63.4%) 1013 (70.8%)

Configurations with access to Reference Implementations

LLMS De-TS-CE-CPA De-TS-CE-RI FIXME De-TS-CE-CPA FIXME De-TS-CE-RI Sk De-TS-CE-CPA Sk De-TS-CE-RI Portfolio
(All Configurations)

CodeGemma 578 (40.4%) 576 (40.3%) 637 (44.5%) 638 (44.6%) 725 (50.7%) 739 (51.6%) 916 (64.0%)
CodeLlama 528 (36.9%) 525 (36.7%) 565 (39.5%) 609 (42.6%) 633 (44.2%) 675 (47.2%) 893 (62.4%)

Gemma 595 (41.6%) 607 (42.4%) 563 (39.3%) 616 (43.0%) 664 (46.4%) 732 (51.2%) 951 (66.5%)
Granite 773 (54.0%) 828 (57.9%) 794 (55.5%) 857 (59.9%) 838 (58.6%) 876 (61.2%) 1132 (79.1%)
Llama3 685 (47.9%) 691 (48.3%) 657 (45.9%) 681 (47.6%) 725 (50.7%) 730 (51.0%) 1016 (71.0%)

Phi3 552 (38.6%) 444 (31.0%) 545 (38.1%) 492 (34.4%) 639 (44.7%) 647 (45.2%) 899 (62.8%)
Portfolio

(All LLMS) 1033 (72.2%) 1046 (73.1%) 1011 (70.6%) 1056 (73.8%) 1050 (73.4%) 1077 (75.3%) 1190 (83.2%)

Table 1: The number of programs fixed by each LLM under various configurations. Row Portfolio (All LLMS), shows the best
results across all LLMS for each configuration. Column Portfolio (All Configurations) shows the best results for each LLM
across all configurations. Mapping abbreviations to configuration names: De - IPA Description, TS - Test Suite, CE - Counter-
example, RI - Reference Implementation, CPA - Closest Program using ASTS, FIXME - FIXME Annotations, SK - Sketches.

Metric: sum(Distance Score)
Configurations

LLMS De-TS De-TS-CE De-TS-CE-CPA De-TS-CE-RI Sk De-TS Sk De-TS-CE Sk De-TS-CE-CPA Sk De-TS-CE-RI
CodeGemma 471.0 486.4 429.7 440.4 524.4 529.5 249.8 497.3
CodeLlama 437.5 438.8 409.5 404.8 477.9 464.5 251.3 459.0

Gemma 306.5 296.9 370.8 231.0 338.8 340.3 156.4 316.2
Granite 512.8 506.3 453.4 292.1 539.8 533.6 172.3 334.5
Llama3 367.9 368.0 414.8 381.9 379.8 384.5 172.7 423.0

Phi3 291.9 292.6 287.6 148.1 326.5 321.4 98.2 253.4

Table 2: The cumulative distance scores for each program successfully repaired by each LLM across various configurations.

highlights the best results achieved by a particular LLM
across all tested configurations. The configurations yield-
ing the highest success rates for the six evaluated LLMS in-
volve incorporating a reference implementation of the IPA
into the prompt. However, rather than genuinely fixing the
buggy program, the LLMS often replace it with the refer-
ence implementation. For instance, GRANITE repairs 876
programs using a configuration that includes bug-free pro-
gram sketches (Sk), an IPA description, counterexamples, a
test suite, and the reference implementation (Sk De-TS-CE-
RI). Notably, 442 of these repaired programs exhibit a TED
value of zero between the reference implementation and the
fixed program, indicating that GRANITE is replicating the
reference implementation. To address this, we separately an-
alyzed configurations that include and exclude access to a
reference implementation. When no reference implementa-
tion is provided (top of Table 1), GRANITE still leads among
the LLMS, fixing up to 59.1% of the programs across all
configurations and 48.3% when using sketches (SK), the
IPA description, and a test suite (SK De-TS). CODEGEM-
MA also performs well, achieving up to 57.5% success in a
portfolio approach and showing particular strength in con-
figurations involving sketches (SK). For instance, CODE-
GEMMA can repair 48.1% of the evaluation benchmark us-
ing bug-free sketches, IPA description, test suite, and coun-

terexample (SK De-TS-CE). Configurations incorporating
sketches (SK) and FIXME annotations generally yield bet-
ter results. Including counterexamples (CE), IPA descrip-
tions, and test suites (De-TS) further boosts the success rate
across different LLMS. The portfolio approach, which com-
bines the strengths of all LLMS and configurations without
using reference implementation, achieves the highest over-
all success rate, fixing 70.8% of the programs. This demon-
strates that leveraging multiple LLMS together can signifi-
cantly enhance repair success.

Furthermore, we provide the results of LLMS with a ref-
erence implementation (bottom of Table 1). The reference
implementation can be either the lecturer’s implementation
for the same IPA or the closest correct program based on
the programs’ Abstract Syntax Trees (ASTs) from a previ-
ously submitted student program, determined by Tree Edit
Distance (TED) values (Orvalho, Janota, and Manquinho
2022a). The intent was to allow the model to reuse correct
code snippets to generate repairs. Results show that includ-
ing a reference implementation allows for better repair re-
sults. However, as mentioned earlier, the LLMS often sim-
ply copy the provided reference implementation. Table 2
presents the sum of the distance scores (see Eq. 1) for the
top-performing LLMS from Table 1 across different config-
urations. This summation aims to penalize LLMS that ei-

100 101 102
Granite+Sk_De-TS-CE-RI

100

101

102
G
ra
ni
te
+
Sk
_D
e-
TS
-C
E

memout/timeout

m
em
ou
t/t
im
eo
ut

Figure 2: Comparison of tree edit distances (TED) for GRA-
NITE’s repairs when using (x-axis) versus not using (y-axis)
correct implementations with configuration Sk De-TS-CE.

ther copy the provided reference implementation or gener-
ate unnecessarily large repairs. For example, GRANITE us-
ing configuration Sk De-TS-CE-RI can repair 876 programs
but yields a total distance score of 334.5, whereas using the
same configuration without a correct implementation repairs
681 programs resulting in a higher distance score of 533.6.

Figure 2 shows a scatter plot that compares the tree edit
distance (TED) of the buggy program to the program fixed
by GRANITE with and without a reference implementation,
using configuration Sk De-TS-CE. Each point represents a
faulty program, where the x-value (resp. y-value) represents
the TED cost of GRANITE’ with access to a reference im-
plementation (resp. without it). Points below the diagonal
indicate that fixing a program with access to a correct im-
plementation incurs a higher TED cost than fixing it without
access. This suggests that while access to a reference imple-
mentation enables GRANITE and other LLMS to repair more
programs, it often results in larger changes to the student’s
program than when no correct implementation is given.

Discussion. To answer our research questions: For RQ1,
all six LLMS using different prompt configurations re-
pair more programs than traditional repair tools. For RQ2,
prompt configurations with FL-based Sketches, IPA de-
scription and test suite yield the most successful repair out-
comes. Moreover, for RQ3, it is clear that incorporating
FL-based Sketches (or even FIXME annotations) allows
the LLMS to repair more programs than only providing
the buggy program. For RQ4, including a reference imple-
mentation allows for more repaired programs but with po-
tentially less efficient fixes. Finally, for RQ5, employing
a Counterexample guided approach significantly improves
the accuracy of LLM-driven APR across various configu-
rations. Counterexamples help in the repair process of cer-
tain LLMS, such as CODEGEMMA and LLAMA3, across all
prompt configurations. For other LLMS, counterexamples
are beneficial but only in specific configurations. This dif-
ference may be due to variations in the training data used

for each LLM. Moreover, we analyzed the effectiveness
of LLMS in repairing programs that CLARA fails to ad-
dress due to control-flow issues, finding that GRANITE with
Sk De-TS performed best, fixing 37.0% of cases, while CO-
DEGEMMA with Sk De-TS-CE followed with 34.5%. GRA-
NITE also demonstrated superior performance in cases with
higher average cyclomatic complexity, whereas CODEGEM-
MA was most effective for simpler programs.

Related Work
Several constraint-based program repair techniques have
been proposed to check if a student’s program is seman-
tically correct: clustering-based (Gulwani, Radicek, and
Zuleger 2018), implementation-driven (Wang, Singh, and Su
2018; Ahmed et al. 2022; Hu et al. 2019; Liu et al. 2019),
and semantic code search (Afzal et al. 2019). Clustering-
based repair tools (Gulwani, Radicek, and Zuleger 2018)
receive an incorrect program, a test suite, and a set of cor-
rect student submissions for the same IPA. Implementation-
driven repair tools use one reference implementation to re-
pair a given incorrect submission (Ahmed et al. 2022).

Large Language Models (LLMS) trained on code
(LLMCS) have demonstrated significant effectiveness in
generating program fixes (Joshi et al. 2023; Xia, Ding, and
Zhang 2023; Wei, Xia, and Zhang 2023; Fan et al. 2023;
Xia, Wei, and Zhang 2023; Brancas, Manquinho, and Mar-
tins 2024). For instance, RING (Joshi et al. 2023) is a mul-
tilingual repair engine powered by an LLMC that uses fault
localization (FL) information from error messages and lever-
ages the few-shot capabilities of LLMCS for code transfor-
mation. In the context of Automated Program Repair (APR)
for programming education, several works have explored the
use of LLMS for coding tasks (Zhang et al. 2024; Phung
et al. 2023; Liffiton et al. 2023). PyDex (Zhang et al. 2024),
for example, employs iterative querying with CODEX, an
LLMC version of ChatGPT, using test-based few-shot se-
lection and structure-based program chunking to repair syn-
tax and semantic errors in Python assignments. Similarly,
CODEHELP (Liffiton et al. 2023) utilizes OpenAI’s LLMS
to provide textual feedback to students on their assignments.
However, to the best of our knowledge, no existing work has
explored the use of LLMS guided by formula-based FL.

Conclusion
Large Language Models (LLMS) excel at completing
strings, while MaxSAT-based fault localization (FL) ex-
cels at identifying buggy parts of a program. We pro-
posed a novel approach combining MaxSAT-based FL and
LLMS via zero-shot learning to enhance Automated Pro-
gram Repair (APR) for introductory programming assign-
ments (IPAS). Experiments show that our bug-free program
sketches, significantly improves the repair capabilities of all
six evaluated LLMS, enabling them to repair more programs
and produce smaller patches compared to other configu-
rations and state-of-the-art symbolic program repair tools.
Therefore, this interaction between Formal Methods and
LLMS yields more accurate and efficient program fixes, en-
hancing feedback mechanisms in programming education.

Acknowledgments
PO acknowledges support from the EU’s Horizon 2020
research and innovation programme under ELISE Grant
Agreement No 951847 and the ERC AdG FUN2MODEL
(Grant agreement No. 834115). This work was partially
supported by Portuguese national funds through FCT, under
projects UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/-
2020), PTDC/CCI-COM/2156/2021 (DOI: 10.54499/-
PTDC/CCI-COM/2156/2021) and 2023.14280.PEX (DOI:
10.54499/2023.14280.PEX) and grant SFRH/BD/07724/-
2020 (DOI: 10.54499/2020.07724.BD). This work was
also supported by the MEYS within the program ERC CZ
under the project POSTMAN no. LL1902 and co-funded
by the EU under the project ROBOPROX (reg. no. CZ-
.02.01.01/00/22 008/0004590).

References
Abate, A.; David, C.; Kesseli, P.; Kroening, D.; and Pol-
green, E. 2018. Counterexample Guided Inductive Synthe-
sis Modulo Theories. In CAV 2018, volume 10981 of LNCS,
270–288. Springer.
Abdin, e.-O. 2024. Phi-3 Technical Report: A Highly Ca-
pable Language Model Locally on Your Phone. CoRR,
abs/2404.14219.
Afzal, A.; Motwani, M.; Stolee, K. T.; Brun, Y.; and Goues,
C. L. 2019. SOSRepair: Expressive Semantic Search for
Real-World Program Repair. IEEE Trans. Software Eng.,
47(10): 2162–2181.
Ahmed, U. Z.; Fan, Z.; Yi, J.; Al-Bataineh, O. I.; and Roy-
choudhury, A. 2022. Verifix: Verified Repair of Program-
ming Assignments. ACM Trans. Softw. Eng. Methodol.
Aho, A. V.; Sethi, R.; and Ullman, J. D. 1986. Compilers:
Principles, Techniques, and Tools. Addison-Wesley series
in computer science / World student series edition. Addison-
Wesley.
Bhatia, S.; Kohli, P.; and Singh, R. 2018. Neuro-symbolic
program corrector for introductory programming assign-
ments. In ICSE 2018, 60–70. ACM.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press.
Brancas, R.; Manquinho, V.; and Martins, R. 2024. Com-
bining Logic with Large Language Models for Auto-
matic Debugging and Repair of ASP Programs. CoRR,
abs/2410.20962.
Contractor, M. R.; and Rivero, C. R. 2022. Improving Pro-
gram Matching to Automatically Repair Introductory Pro-
grams. In Crossley, S.; and Popescu, E., eds., Intelligent Tu-
toring Systems, 323–335. Cham: Springer International Pub-
lishing.
Fan, Z.; Gao, X.; Mirchev, M.; Roychoudhury, A.; and Tan,
S. H. 2023. Automated Repair of Programs from Large Lan-
guage Models. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023, 1469–1481. IEEE.

Gulwani, S.; Radicek, I.; and Zuleger, F. 2018. Automated
clustering and program repair for introductory programming
assignments. In PLDI 2018, 465–480. ACM.
Gupta, R.; Kanade, A.; and Shevade, S. K. 2019. Deep Re-
inforcement Learning for Syntactic Error Repair in Student
Programs. In The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, 930–937. AAAI Press.
Gupta, R.; Pal, S.; Kanade, A.; and Shevade, S. K. 2017.
DeepFix: Fixing Common C Language Errors by Deep
Learning. In Singh, S. P.; and Markovitch, S., eds., AAAI
2017, 1345–1351. AAAI Press.
Hu, Y.; Ahmed, U. Z.; Mechtaev, S.; Leong, B.; and Roy-
choudhury, A. 2019. Re-Factoring Based Program Repair
Applied to Programming Assignments. In 34th IEEE/ACM
International Conference on Automated Software Engineer-
ing, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
388–398. IEEE.
HuggingFace. 2024. . https://huggingface.co. [Online; ac-
cessed 1-July-2024].
Ignatiev, A.; Morgado, A.; Weissenbacher, G.; and Marques-
Silva, J. 2019. Model-Based Diagnosis with Multiple Obser-
vations. In Kraus, S., ed., IJCAI 2019, 1108–1115. ijcai.org.
Jha, S.; Gulwani, S.; Seshia, S. A.; and Tiwari, A. 2010.
Oracle-guided component-based program synthesis. In Pro-
ceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, 215–224.
Jin, M.; Shahriar, S.; Tufano, M.; Shi, X.; Lu, S.; Sundare-
san, N.; and Svyatkovskiy, A. 2023. InferFix: End-to-End
Program Repair with LLMs. In ESEC/FSE 2023, 1646–
1656. ACM.
Jose, M.; and Majumdar, R. 2011a. Bug-Assist: Assisting
Fault Localization in ANSI-C Programs. In CAV 2011, vol-
ume 6806 of LNCS, 504–509. Springer.
Jose, M.; and Majumdar, R. 2011b. Cause clue clauses: error
localization using maximum satisfiability. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, 437–446.
ACM.
Joshi, H.; Sánchez, J. P. C.; Gulwani, S.; Le, V.; Verbruggen,
G.; and Radicek, I. 2023. Repair Is Nearly Generation: Mul-
tilingual Program Repair with LLMs. In AAAI 2023, 5131–
5140. AAAI Press.
Liffiton, M. H.; Sheese, B. E.; Savelka, J.; and Denny,
P. 2023. CodeHelp: Using Large Language Models with
Guardrails for Scalable Support in Programming Classes. In
Koli Calling International Conference on Computing Edu-
cation Research, 8:1–8:11. ACM.
Liu, X.; Wang, S.; Wang, P.; and Wu, D. 2019. Automatic
grading of programming assignments: an approach based
on formal semantics. In Beecham, S.; and Damian, D. E.,
eds., Proceedings of the 41st International Conference on
Software Engineering: Software Engineering Education and
Training, ICSE (SEET) 2019, 126–137. IEEE / ACM.
Marques-Silva, J.; Janota, M.; Ignatiev, A.; and Morgado,
A. 2015. Efficient Model Based Diagnosis with Maximum
Satisfiability. In IJCAI 2015, 1966–1972. AAAI Press.

Mesbah, A.; Rice, A.; Johnston, E.; Glorioso, N.; and Af-
tandilian, E. 2019. DeepDelta: learning to repair compila-
tion errors. In ESEC/SIGSOFT FSE 2019, 925–936. ACM.
Mesnard, e.-a. 2024. Gemma: Open Models Based on Gem-
ini Research and Technology. CoRR, abs/2403.08295.
Mishra, e.-a. 2024. Granite Code Models: A Family of
Open Foundation Models for Code Intelligence. CoRR,
abs/2405.04324.
Orvalho, P.; Janota, M.; and Manquinho, V. 2022a. In-
vAASTCluster: On Applying Invariant-Based Program
Clustering to Introductory Programming Assignments.
CoRR, abs/2206.14175.
Orvalho, P.; Janota, M.; and Manquinho, V. 2024a. C-Pack
of IPAs: A C90 Program Benchmark of Introductory Pro-
gramming Assignments. In 2024 IEEE/ACM International
Workshop on Automated Program Repair (APR), 14–21. .:
ACM.
Orvalho, P.; Janota, M.; and Manquinho, V. 2024b. CFaults:
Model-Based Diagnosis for Fault Localization in C Pro-
grams with Multiple Test Cases. In Formal Methods - 26th
International Symposium, FM 2024, volume 14933 of Lec-
ture Notes in Computer Science, 463–481. ISBN 978-3-031-
71162-6.
Orvalho, P.; Janota, M.; and Manquinho, V. 2024c. Git-
SEED: A Git-backed Automated Assessment Tool for Soft-
ware Engineering and Programming Education. In Proceed-
ings of the 2024 ACM Virtual Global Computing Education
Conference V. 1, SIGCSE Virtual 2024, Virtual Event, NC,
USA, December 5-8, 2024. ACM.
Orvalho, P.; Janota, M.; and Manquinho, V. M. 2022b. Mul-
tIPAs: Applying Program Transformations To Introductory
Programming Assignments For Data Augmentation. In
ESEC/FSE 2022, 1657–1661. ACM.
Orvalho, P.; Manquinho, V.; and Martins, R. 2023. UpMax:
User Partitioning for MaxSAT. In 26th International Con-
ference on Theory and Applications of Satisfiability Test-
ing, SAT 2023, volume 271 of LIPIcs, 19:1–19:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Orvalho, P.; Piepenbrock, J.; Janota, M.; and Manquinho,
V. M. 2023. Graph Neural Networks for Mapping Variables
Between Programs. In ECAI 2023 - 26th European Confer-
ence on Artificial Intelligence, volume 372 of Frontiers in
Artificial Intelligence and Applications, 1811–1818. Poland:
IOS Press.
Orvalho, P.; Terra-Neves, M.; Ventura, M.; Martins, R.; and
Manquinho, V. M. 2019. Encodings for Enumeration-Based
Program Synthesis. In Principles and Practice of Constraint
Programming - 25th International Conference, CP 2019,
Stamford, CT, USA, September 30 - October 4, 2019, Pro-
ceedings, 583–599.
Phung, T.; Cambronero, J.; Gulwani, S.; Kohn, T.; Majum-
dar, R.; Singla, A.; and Soares, G. 2023. Generating High-
Precision Feedback for Programming Syntax Errors using
Large Language Models. In International Conference on
Educational Data Mining, EDM. International Educational
Data Mining Society.

Pu, Y.; Narasimhan, K.; Solar-Lezama, A.; and Barzilay, R.
2016. sk p: a neural program corrector for MOOCs. In
Visser, E., ed., Companion Proceedings of the 2016 ACM
SIGPLAN International Conference on Systems, Program-
ming, Languages and Applications: Software for Humanity,
SPLASH 2016, 39–40. ACM.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artif. Intell., 32(1): 57–95.
Rolim, R.; Soares, G.; D’Antoni, L.; Polozov, O.; Gulwani,
S.; Gheyi, R.; Suzuki, R.; and Hartmann, B. 2017. Learn-
ing syntactic program transformations from examples. In
Uchitel, S.; Orso, A.; and Robillard, M. P., eds., ICSE 2017,
404–415. IEEE / ACM.
Rozière, e.-a. 2023. Code Llama: Open Foundation Models
for Code. CoRR, abs/2308.12950.
Solar-Lezama, A.; Rabbah, R. M.; Bodı́k, R.; and Ebcioglu,
K. 2005. Programming by sketching for bit-streaming pro-
grams. In PLDI, 281–294. ACM.
Solar-Lezama, A.; Tancau, L.; Bodı́k, R.; Seshia, S. A.; and
Saraswat, V. A. 2006. Combinatorial sketching for finite
programs. In ASPLOS, 404–415.
Tai, K. 1979. The Tree-to-Tree Correction Problem. J. ACM,
26(3): 422–433.
Touvron, e.-a. 2023. LLaMA: Open and Efficient Founda-
tion Language Models. CoRR, abs/2302.13971.
Wang, K.; Singh, R.; and Su, Z. 2018. Search, align, and re-
pair: data-driven feedback generation for introductory pro-
gramming exercises. In PLDI 2018, 481–495. ACM.
Wei, Y.; Xia, C. S.; and Zhang, L. 2023. Copiloting the Copi-
lots: Fusing Large Language Models with Completion En-
gines for Automated Program Repair. In ESEC/FSE, 172–
184. ACM.
Xia, C. S.; Ding, Y.; and Zhang, L. 2023. The Plastic
Surgery Hypothesis in the Era of Large Language Models.
In 38th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2023, Luxembourg, September
11-15, 2023, 522–534. IEEE.
Xia, C. S.; Wei, Y.; and Zhang, L. 2023. Automated Program
Repair in the Era of Large Pre-trained Language Models. In
ICSE, 1482–1494. IEEE.
Xia, C. S.; and Zhang, L. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot
learning. In ESEC/FSE, 959–971. ACM.
Yasunaga, M.; and Liang, P. 2020. Graph-based, Self-
Supervised Program Repair from Diagnostic Feedback. In
ICML 2020, volume 119, 10799–10808. PMLR.
Zhang, J.; Cambronero, J. P.; Gulwani, S.; Le, V.; Piskac,
R.; Soares, G.; and Verbruggen, G. 2024. PyDex: Repair-
ing Bugs in Introductory Python Assignments using LLMs.
8(OOPSLA): 1100–1124.
Zhang, K.; and Shasha, D. E. 1989. Simple Fast Algorithms
for the Editing Distance Between Trees and Related Prob-
lems. SIAM J. Comput., 18(6): 1245–1262.
Zhao, e.-a. 2024. CodeGemma: Open Code Models Based
on Gemma. CoRR, abs/2406.11409.

