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Abstract

The increasing demand for programming education has given rise to all kinds of online
evaluations, such as Massive Open Online Courses (MOOCs) focused on introductory
programming assignments (IPAs), especially over the last few years due to the coronavirus
outbreak. As a consequence of a large number of enrolled students, one of the main
challenges in these courses is to provide valuable and personalized feedback to students.
This personalized feedback can be provided as a list of possible repairs to a student’s
program. Typically semantic program repair tools repair an incorrect program using a
correct implementation for the same IPA. In order to compare both programs, a relation
between both programs’ sets of variables is required. Thus, in this work, we propose to
learn how to map the set of variables between different small imperative programs based
on both programs’ abstract syntax trees (ASTs) using graph neural networks (GNNs).

Introduction. Program Synthesis, the task to automatically generate programs and math-
ematical objects that satisfy a given high-level specification [3, 12], is a well-studied problem
in Theorem Proving [4, 5], and it has even been considered the Holy Grail of Computer Sci-
ence [6, 9]. Program Repair can be seen as a special case of Program Synthesis, where a given
program has a faulty region that needs to be repaired by synthesizing a correct patch or by
reusing code snippets from other correct programs. Automated program repair [1, 7, 8, 13] has
become crucial to provide feedback to each novice programmer by checking their introductory
programming assignments (IPAs) submissions using a pre-defined test suite. Semantic program
repair frameworks use a correct implementation, provided by the lecturer or submitted by a
previously enrolled student, to repair a new incorrect student’s submission. These tools need to
compare both programs, i.e., the correct and the faulty implementation. In order to compare
both programs, a relation between both programs’ sets of variables is required. For exam-
ple, consider both programs presented in Listings 1, where having a mapping between both
programs’ variables lets us reason about which repairs one should perform to fix the faulty
program. In this position paper, we propose to take advantage of the structural information of
the abstract syntax trees (ASTs) of small imperative programs to learn how to map the set of
variables between a correct program and a faulty one using graph neural networks (GNNs).

IPAs Dataset. We used the C-Pack-IPAs [10] benchmark to evaluate this work. This
benchmark is composed by student programs developed during an introductory programming
course in C language were collected at Instituto Superior Técnico. First, we selected only sub-
missions that compiled without any error and satisfied a set of input-output test cases for each
IPA. Afterwards, we used MultIPAs [11], a program transformation tool that can augment
IPAs benchmarks by performing program mutations and introducing bugs to the programs.
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Listing 1: Function that finds and returns
the maximum number among n1, n2 and n3.

1 int max(int n1, int n2, int n3)
2 {
3 int m = n1 > n2 ? n1 : n2;
4 return n3 > m ? n3 : m;
5 }

Listing 2: Function that finds and returns
the maximum number among x, y and z.

1 int max(int x, int y, int z){
2 int m = 0;
3 m = x > m ? x : m;
4 m = y > m ? y : m;
5 return z > m ? z : m;
6 }

Listings 1: Both functions find and return the maximum number among their parameters’
values. However, the function in Listing 2 is only correct for positive numbers, if we consider
negative numbers the function is incorrect since it assigns the variable m to 0. The mapping
between these programs’ sets of variables is {m : m; n1 : x; n2 : y; n3 : z}.

MultIPAs can perform simple mutations to each program (e.g. swapping comparison opera-
tors, swapping the if’s then-block with the else-block and negating the test condition) to gen-
erate semantically equivalent programs with the same variables. Hence, we gathered a dataset
of programs and the mappings between their sets of variables. For example, we have 94 correct
submissions for the first IPA. By just swapping comparison operators (e.g. ≥,≤,==, 6=), we
are able to compute a dataset of 27261 pairs of programs and the mappings between their sets
of variables. We plan to perform more complex mutations to the set of IPAs.

Program Representations. We represent programs based on their abstract syntax trees
(ASTs). An AST is described by a set of nodes that correspond to non-terminal symbols in
the programming language’s grammar and a set of tokens that correspond to terminal symbols.
Then, we create a unique node in the graph for each distinct variable in the program and connect
all the variable occurrences in the program to the same unique node. Regarding the edges of the
program representation, we consider two types of edges in our representation: child and sibling
edges. Child edges correspond to the typical edges in the AST representation that connect each
parent node to its children. Child edges are bidirectional. Sibling edges connect each child to
its sibling successor. These edges denote the order of the arguments for a given node [2]. Sibling
edges allow the program representation to differentiate between different arguments when the
order of the arguments is important (e.g. binary operation such as ≤). For example, consider
the node that corresponds to the operation σ(A1, A2, . . . , Am). The parent node σ is connected
to each one of its children by a child edge e.g. σ ↔ A1, σ ↔ A2, . . . , σ ↔ Am. Additionally, each
child its connected to its successor by a sibling edge e.g. A1 → A2, A2 → A3, . . . , Am−1 → Am.
The interested reader is referred to appendix A for a graphical representation of a small example.

GNNs. Graph Neural Networks are a subclass of neural networks designed to operate on
graph-structured data, which may be citation networks, first-order logic or representations of
computer code. Here, we use a pair of ASTs, representing two programs for which we want to
match variables, as the input. The main operative mechanism is to perform message passing
between the nodes, so that information about the global problem can be passed between the
local constituents. The content of these messages and the final representation of the nodes
is parameterized by neural network operations (matrix multiplications composed with a non-
linear function). For the variable matching task, we do the following to train the parameters of
the network. After several message passing rounds, through the edges defined by the program
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representations above, we obtain numerical vectors corresponding to each variable node in the
two programs. We compute scalar products between each possible combination of variable nodes
in the two programs, followed by a softmax function. As the correct mapping of variables is
known because the samples are obtained by program mutation, we can compute a cross-entropy
loss and minimize it so that the network output corresponds to the labeled variable matching.
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A Appendix

Listing 3: Small example of a C code block
with an expression that uses int variables a
and b, previously declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID a expr

ID a op - ID b

(a) Part of the AST representation of Listing 3.

block

assign

ID expr

a

ID - ID

b

(b) Our program representation for the program presented in Listing 3. We add additional variable
nodes (green nodes), new sibiling edges (red dashed edges) and we also make the AST edges (black
edges) bidirectional.

Figure 1: AST and our program representation for the small code snippet presented in Listing 3.
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