
FM
Artifact
Evaluation

Available

FM
Artifact
Evaluation

FunctionalFunctional

CFaults: Model-Based Diagnosis for Fault
Localization in C with Multiple Test Cases

Pedro Orvalho1[0000−0002−7407−5967](�), Mikoláš Janota2[0000−0003−3487−784X],
and Vasco Manquinho1[0000−0002−4205−2189]

1 INESC-ID, IST, Universidade de Lisboa, Portugal
{pmorvalho, vasco.manquinho}@tecnico.ulisboa.pt

2 Czech Technical University in Prague, Czechia
mikolas.janota@cvut.cz

Abstract. Debugging is one of the most time-consuming and expensive
tasks in software development. Several formula-based fault localization
(FBFL) methods have been proposed, but they fail to guarantee a set of
diagnoses across all failing tests or may produce redundant diagnoses that
are not subset-minimal, particularly for programs with multiple faults.
This paper introduces a novel fault localization approach for C programs
with multiple faults. CFaults leverages Model-Based Diagnosis (MBD)
with multiple observations and aggregates all failing test cases into a
unified MaxSAT formula. Consequently, our method guarantees consis-
tency across observations and simplifies the fault localization procedure.
Experimental results on two benchmark sets of C programs, TCAS
and C-Pack-IPAs, show that CFaults is faster than other FBFL ap-
proaches like BugAssist and SNIPER. Moreover, CFaults only gen-
erates subset-minimal diagnoses of faulty statements, whereas the other
approaches tend to enumerate redundant diagnoses.

Keywords: Fault Localization · Model-Based Diagnosis · Formula-based
Fault Localization · Debugging · Maximum Satisfiability.

1 Introduction

Localizing system faults has always been one of the most time-consuming and
expensive tasks. Given a buggy program, fault localization (FL) involves identi-
fying locations in the program that could cause a faulty behaviour (bug).

Given a faulty program and a test suite with failing test cases, current
formula-based fault localization (FBFL) methods encode the localization problem
into several optimization problems to identify a minimal set of faulty statements
(diagnoses) within a program. Typically, these methods find a minimal diagnosis
considering each failing test case individually rather than simultaneously with
all failing test cases. Moreover, these FBFL methods enumerate all Minimal
Correction Subsets (MCSes) [22] to cover all diagnoses.

For instance, BugAssist [17,18], a prominent FBFL tool, implements a rank-
ing mechanism for bug locations. For each failing test, BugAssist enumerates all

2 P. Orvalho et al.

Listing 1.1: Faulty program
example. Faulty lines: {5,8,11}.

1 int main(){
2 // finds maximum of 3 numbers
3 int f,s,t;
4 scanf("%d%d%d",&f,&s,&t);
5 if (f < s && f >= t)
6 // fix: f >= s
7 printf("%d",f);
8 if (f > s && s <= t)
9 // fix: f < s and s >= t

10 printf("%d",s);
11 if (f > t && s > t)
12 // fix: f < t and s < t
13 printf("%d",t);
14
15 return 0;
16 }

Input Output
t0 1 2 3 3
t1 6 2 1 6
t2 -1 3 1 3

Table 1: Test-suite.

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {4,13} {5,8,11}

Table 2: Number of diagnoses (faulty
statements) generated by BugAs-
sist [17] and SNIPER [21] per test.

diagnoses of a Maximum Satisfiability (MaxSAT) formula corresponding to bug
locations. Subsequently, BugAssist ranks diagnoses based on their frequency
of appearance in each failing test. Other FBFL tools, like SNIPER [21], also
enumerate all diagnoses for each failing test. However, the set of SNIPER’s di-
agnoses is obtained by taking the Cartesian product of the diagnoses gathered
using each failing test. As a result, while FBFL methods can determine mini-
mal diagnoses per failing test, BugAssist cannot guarantee a minimal diagnosis
considering all failing tests, and SNIPER may enumerate a significant number
of redundant diagnoses that are not minimal [16]. These limitations may pose
challenges for programs with multiple faulty statements, as shown in Example 1.

Example 1 (Motivation). Consider the program presented in Listing 1.1, which
aims to determine the maximum among three given numbers. However, based
on the test suite shown in Table 1, the program is faulty, as its output differs
from the expected. The set of minimally faulty lines in this program is {5, 8, 11},
as all three if-conditions are incorrect according to the test suite. Fixing any
subset of these lines would be insufficient to repair the program. One possible
fix is to replace all these conditions with the suggested fixes in lines {6, 9, 12}.

In a typical FBFL approach, the minimal set of statements identified as faulty
might include, for example, lines 4 and 5. Removing the scanf statement and
an if-statement would allow an FBFL tool to assign any value to the input
variables in order to always produce the expected output. However, considering
an approach that prioritizes identifying faulty statements within the program’s
logic before evaluating issues in the input/output statements (such as scanf
and printf), one might identify lines {5, 8, 11} as the faulty statements. When
applying BugAssist’s and SNIPER’s approach on the program in Listing 1.1
with the described optimization criterion and utilizing the inputs/outputs de-
tailed in Table 1 as specification, distinct sets of faults are identified for each
failing test. Table 2 presents the diagnosis (set of faulty lines) produced by each
tool, along with the number of diagnoses enumerated for each failing test case

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 3

and the total number of unique diagnoses after aggregating the diagnoses from
all tests, using each tool’s respective method.

In the case of BugAssist, diagnoses are prioritized based on their occurrence
frequency. Consequently, BugAssist yields 32 unique diagnoses and selects {4,
13} since this diagnosis is identified in every failing test. In contrast, SNIPER
computes the Cartesian product of all diagnoses, resulting in 1297 unique diag-
noses. Note that BugAssist’s diagnoses may not adequately identify all faulty
program statements. Conversely, SNIPER’s diagnosis {5, 8, 11} is minimal, even
though it enumerates an additional 1296 diagnoses. Hence, existing FBFL meth-
ods do not ensure a minimal diagnosis across all failing tests (e.g., BugAssist)
or may produce an overwhelming number of redundant sets of diagnoses (e.g.,
SNIPER), especially for programs with multiple faults.

This paper tackles this challenge by formulating the FL problem as a sin-
gle optimization problem in Section 3. We leverage MaxSAT and the theory of
Model-Based Diagnosis (MBD), integrating all failing test cases simultaneously.
This approach allows us to generate only minimal diagnoses to identify all faulty
program components within a C program. Furthermore, we have implemented
the MBD problem with multiple test cases in CFaults, a fault localization
tool for ANSI-C programs, presented in Section 4. CFaults begins by unrolling
and instrumentalizing C programs at the code-level, ensuring independence from
the bounded model checker. Next, CFaults utilizes CBMC [5], a well-known
bounded model checker for C, to generate a trace formula of the program. Fi-
nally, CFaults encodes the problem into MaxSAT to identify the minimal set
of diagnoses corresponding to the buggy statements.

Experimental results presented in Section 5 on two benchmarks of C pro-
grams, TCAS [10] (industrial), and C-Pack-IPAs [30] (programming exercises),
show that CFaults effectively detects minimal sets of diagnoses. In contrast,
SNIPER and BugAssist either generate an overwhelming number of redun-
dant diagnoses or fail to produce a minimal set required to fix each program.

To summarize, the contributions of this work are: (1) we tackle the fault
localization problem in C programs using a Model-Based Diagnosis (MBD) ap-
proach considering multiple failing test cases, and formulating it as a unified
optimization problem; (2) we implement this MBD approach in a publicly avail-
able tool called CFaults [31] 3 that unrolls and instrumentalizes C programs
at the code level, making it independent of the bounded model checker used;
(3) CFaults allows refinement of localized faults to pinpoint the bug’s location
more precisely; (4) we evaluate CFaults on two sets of C programs (TCAS and
C-Pack-IPAs), showing that CFaults is fast and only produces subset-minimal
diagnoses, unlike other state-of-the-art formula-based fault localization tools.

3 https://github.com/pmorvalho/CFaults

https://github.com/pmorvalho/CFaults

4 P. Orvalho et al.

2 Preliminaries

This section provides definitions and notations that are used throughout the pa-
per. We start by presenting basic definitions of propositional logic and programs
and then address standard model-based diagnosis (MBD) definitions.

The Boolean Satisfiability (SAT) problem is the decision problem for propo-
sitional logic [3]. A propositional formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses where each clause is a disjunction of literals. A literal
is a propositional variable xi or its negation ¬xi. Given a CNF formula ϕ, the
SAT problem corresponds to deciding if there is an assignment to the variables
in ϕ such that ϕ is satisfied or prove that no such assignment exists. When ap-
plicable, set notation will be used for formulas and clauses. A formula can be
represented as a set of clauses (meaning its conjunction) and a clause as a set of
literals (meaning its disjunction).

The Maximum Satisfiability (MaxSAT) problem is an optimization version of
the SAT problem. Given a CNF formula ϕ, the goal is to find an assignment that
maximizes the number of satisfied clauses in ϕ. In partial MaxSAT, ϕ is split into
hard clauses (ϕh) and soft clauses (ϕs). Given a formula ϕ = (ϕh, ϕs), the goal is
to find an assignment that satisfies all hard clauses in ϕh while minimizing the
number of unsatisfied soft clauses in ϕs. Moreover, in the weighted version of
the partial MaxSAT problem, each soft clause is assigned a weight, and the goal
is to find an assignment that satisfies all hard clauses and minimizes the sum of
the weights of the unsatisfied soft clauses. Let ϕ = (ϕh, ϕs) be a partial MaxSAT
formula. A Minimal Correction Subset (MCS) µ of ϕ is a subset µ ⊆ ϕs where
ϕh ∪ (ϕs \ µ) is satisfiable and, for all c ∈ µ, ϕh ∪ (ϕs \ µ) ∪ {c} is unsatisfiable.
A dual concept of MCSes are Minimal Unsatisfiable Subsets (MUSes) [22,16].

Programs. A program is considered sequential, comprising standard statements
such as assignments, conditionals, loops, and function calls, each adhering to
their conventional semantics in C. A program is deemed to contain a bug when
an assertion violation occurs during its execution with input I. Conversely, if
no assertion violation occurs, the program is considered correct for input I. In
cases where a bug is detected for input I, it is possible to define an error trace,
representing the sequence of statements executed by program P on input I.

A Trace Formula (TF) is a propositional formula that is SAT iff there exists
an execution of the program that terminates with a violation of an assert state-
ment while satisfying all assume statements. For further information on TFs,
interested readers are referred to [5,8].

Model-Based Diagnosis (MBD). The following definitions are commonly used
in the MBD theory [34,16,24]. A system description P is composed of a set of
components C = {c1, . . . , cn}. Each component in C can be declared healthy or
unhealthy. For each component c ∈ C, h(c) = 0 if c is unhealthy, otherwise,
h(c) = 1. As in prior works [16,25], P is described by a CNF formula, where Fc

denotes the encoding of component c:

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 5

P ≜
∧

c∈C
(¬h(c) ∨ Fc) (1)

Observations represent deviations from the expected system behaviour. An
observation, denoted as o, is a finite set of first-order sentences [34,16], which
is assumed to be encodable in CNF as a set of unit clauses. In this work, the
failing test cases represent the set of observations.

A system P is considered faulty if there exists an inconsistency with a
given observation o when all components are declared healthy. The problem
of model-based diagnosis (MBD) aims to identify a set of components which,
if declared unhealthy, restore consistency. This problem is represented by the
3-tuple ⟨P, C, o⟩, and can be encoded as a CNF formula:

P ∧ o ∧
∧

c∈C
h(c) ⊨ ⊥ (2)

For a given MBD problem ⟨P, C, o⟩, a set of system components ∆ ⊆ C is a
diagnosis iff:

P ∧ o ∧
∧

c∈C\∆
h(c) ∧

∧
c∈∆

¬h(c) ⊭ ⊥ (3)

A diagnosis ∆ is minimal iff no subset of ∆, ∆′ ⊊ ∆, is a diagnosis, and ∆
is of minimal cardinality if there is no other diagnosis ∆′′ ⊆ C with |∆′′| < |∆|.

A diagnosis is redundant if it is not subset-minimal [16].
To encode the Model-Based Diagnosis problem with one observation with

partial MaxSAT, the set of clauses that encode P (1) represents the set of hard
clauses. The soft clauses consists of unit clauses that aim to maximize the set
of healthy components, i.e.,

∧
c∈C h(c) [36,24]. This MaxSAT encoding of MBD

enables enumerating minimum cardinality diagnoses and subset minimal diag-
noses, considering a single observation. Furthermore, a minimal diagnosis is a
minimal correction subset (MCS) of the MaxSAT formula. Given an inconsis-
tent formula that encodes the MDB problem (2), a minimal diagnosis ∆ satis-
fies (3), thereby making ∆ an MCS of the MaxSAT formula. BugAssist [18],
SNIPER [21], and other model-based diagnosis (MBD) tools for fault localiza-
tion in circuits [24,36,16] encode the localization problem with partial MaxSAT.

More recently, the MaxSAT encoding for MBD [16] has been generalized to
multiple inconsistent observations. Let O = {o1, . . . om} be a set of observa-
tions. Each observation is associated with a replica Pi of the system P. The
system remains unchanged given different observations, where the components
are replicated for each observation, but the healthy variables are shared. For a
given observation oi, a diagnosis is given by the following:

Pi ∧ oi ∧
∧

c∈C\∆
h(c) ∧

∧
c∈∆

¬h(c) ⊭ ⊥ (4)

The goal is to find a minimal diagnosis ∆ ⊆ C, such that ∆ is a minimal set
of components when deactivated the system becomes consistent with all obser-
vations O = {o1, . . . om}. Moreover, when considering multiple observations,
an aggregated diagnosis is a subset of components that includes one possible
diagnosis for each given observation.

6 P. Orvalho et al.

3 Model-Based Diagnosis with Multiple Test Cases

This paper encodes the fault localization problem as a Model-Based Diagnosis
with multiple observations using a single optimization problem. We simultane-
ously integrate all failing test cases (observations) in a single MaxSAT formula.
This approach allows us to generate only minimal diagnoses capable of identify-
ing all faulty components within the system, in our case, a C program.

Given m observations, O = {o1, . . . , om}, a distinct replica of the system,
denoted as Pi, is required for each observation oi. The hard clauses, ϕh, in
our MaxSAT formulation correspond to each observation’s encoding (oi) and
m system replicas, one for each observation, Pi. Hence, ϕh =

∧
oi∈O (Pi ∧ oi).

Additionally, we aim to maximize the set of healthy components. Therefore, the
soft clauses are formulated as: ϕs =

∧
c∈C h(c). Thus, given the MaxSAT solution

of (ϕh, ϕs), its complement, i.e., the set of unhealthy components (h(c) = 0),
corresponds to a subset-minimal aggregated diagnosis. This diagnosis is a subset-
minimal of components that, when declared unhealthy (deactivated), make the
system consistent with all observations, as follows:∧

oi∈O
(Pi ∧ oi) ∧

∧
c∈C\∆

h(c) ∧
∧

c∈∆
¬h(c) ⊭ ⊥ (5)

We assume that the system remains unchanged given different observations,
where the components are replicated for each observation, but the healthy vari-
ables are shared. This is necessary because we analyze all observations jointly,
which can affect the component’s behaviour. In our work, the observations con-
sist of a test suite containing failing test cases.

The HSD [16] algorithm was proposed to localize single faults in circuits given
multiple observations. The HSD algorithm is based on hitting set dualization
(HSD). For each observation oi, this algorithm computes minimal unsatisfiable
subsets (MUSes) of the MaxSAT formula encoded by (4). Next, the HSD algo-
rithm computes a minimum hitting set H on the MUSes, and checks if H makes
the system consistent with each observation individually. Hence, to compute all
subset-minimal aggregated diagnoses of a faulty system P, the algorithm per-
forms at least m oracle calls for each minimum hitting set computed, where m is
the number of observations. Each oracle call uses a different system replica (4).

Our approach encodes the problem into a single MaxSAT formula, while
HSD [16] divides the problem into m MaxSAT formulas, one for each observa-
tion. Additionally, for each minimal hitting set computed in HSD, m oracle calls
are needed to check if a diagnosis is consistent with all observations. However,
in our case, we just need to perform a single MaxSAT call that returns a mini-
mal diagnosis, which is, by definition, consistent with all observations since all
observations are encoded into the formula. Furthermore, the HSD algorithm was
solely evaluated using single faults in circuits given multiple observations, and it
was not implemented to work with programs. A potential drawback is that our
MaxSAT formula grows with the number of observations. This could result in a
large formula and affect the performance of the MaxSAT solver. However, this
scenario was not observed in our experimental results (see Section 5).

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 7

Program P

Test
Suite

Localized
Faults

CFaults

t1 = {i1 , o1}

t2 = {i2 , o2}

tn = {in , on}

Unroller Instrumentalizer CBMC

MaxSAT
Encoder

Oracle
(MaxSAT Solver)

Refinement
Step

Pu Pi

CNF(Pi)

WCNF(Pi)1st iteration

Fig. 1: Overview of CFaults.

4 CFaults: MBD with Multiple Observations for C

CFaults is a new model-based diagnosis (MBD) tool for fault localization in
C programs with multiple test cases. Unlike previous works, CFaults uses the
approach proposed in Section 3, and C programs are relaxed at the code level,
enabling users to leverage other bounded model checkers effectively. Figure 1 pro-
vides an overview of CFaults consisting of six main steps: program unrolling,
program instrumentalization, bounded model checking (CBMC), encoding to
MaxSAT, an Oracle (MaxSAT solver), and a refinement step. Hence, CFaults
formulates the MBD problem with multiple test cases as the 3-tuple ⟨P, C,O⟩,
where the observations O consist of failing test cases (inputs and assertions), the
components C represent the set of program statements, and the system descrip-
tion P is a trace formula of the unrolled and instrumentalized program. The
program is instrumented at the code level with relaxation variables correspond-
ing to our healthy variables.

Program unrolling. CFaults starts the unrolling process by expanding the
faulty program using the set of failed tests from the test suite. In this context, an
unrolled program signifies the original program expanded m times (m program
scopes), where m denotes the number of failed test cases. An unrolled program
encodes the execution of all failing tests within the program, along with their
corresponding inputs and specifications (assertions).

The unrolling process encompasses three primary steps. Initially, CFaults
generates fresh variables and functions for each of the m program scopes, ensur-
ing each scope possesses unique variables and functions. Subsequently, CFaults
establishes variables representing the inputs and outputs for each program scope
corresponding to the failing tests. Input operations, such as scanf, undergo
translation into read accesses to arrays corresponding to the inputs, while output
operations, such as printf, are replaced by write operations into arrays repre-
senting the program’s output. Every exit point of the program (e.g., a return
statement in the main function) is replaced with a goto statement directing the

8 P. Orvalho et al.

Listing 1.2: The program from Listing 1.1 after being subjected to CFaults’
unrolling process, using the test suite presented in Table 1. For simplicity, only
the initial scope corresponding to test t0 is displayed. The scopes scope_1 and
scope_2 associated with failing tests t1 and t2 are omitted.

1 float _input_f0[3] = {1, 2, 3};
2 char _out_0[2] = "3";
3 int _ioff_f0 = 0, _ooff_0 = 0;
4 // ... inputs and outputs for the other tests
5 int main(){
6 scope_0:{
7 int f_0, s_0, t_0;
8 f_0 = _input_f0[_ioff_f0++];
9 s_0 = _input_f0[_ioff_f0++];

10 t_0 = _input_f0[_ioff_f0++];
11 if ((f_0 < s_0) && (f_0 >= t_0))
12 _ooff_0 = printInt(_out_0, _ooff_0, f_0);
13 if ((f_0 > s_0) && (s_0 <= t_0))
14 _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 if ((f_0 > t_0) && (s_0 > t_0))
16 _ooff_0 = printInt(_out_0, _ooff_0, t_0);
17 goto scope_1;
18 }
19 // ... scope_1 and scope_2
20 final_step:
21 assert(strcmp(_out_0, "3") != 0 || // other assertions);
22 }

program flow to the next failing test’s scope. Lastly, at the end of the unrolled
program, CFaults embeds an assertion capturing all the specifications of the
failing tests. Consequently, the unrolled program encapsulates the execution of
all failing tests within a single program.

Listing 1.2 exhibits a program segment generated through the unrolling pro-
cess applied to Listing 1.1. CFaults establishes global variables to represent the
inputs and outputs of each failing test (lines 1–3, Listing 1.2). For the sake of
simplicity, the depicted listing illustrates solely the initial scope corresponding to
test 0 from the test suite outlined in Table 1. Distinct variables are introduced
for each failing test. Furthermore, the scanf function call is substituted with
input array operations (lines 8–10), while the printf calls are replaced with
CFaults’ print functions, akin to sprintf functions, which direct output to a
buffer. Lastly, the unrolled program concludes with an assertion representing the
disjunction of the negation of all failing test assertions. For instance, suppose
there are m failing tests, where Ai denotes the assertion of test ti. In this scenario,
CFaults injects the following assertion into the program: ¬A1 ∨ · · · ∨ ¬Am.

Program Intrumentalization. After integrating all possible executions and
assertions from failing tests during the unrolling step, CFaults proceeds to in-
strumentalize the unrolled C program by introducing relaxation variables for
each program component (statement/instruction). Each relaxation variable ac-
tivates (or deactivates) the program component being relaxed when assigned
to true (or false) respectively. CFaults ensures that there are no conflicts be-
tween the names of the relaxation variables and the names of the program’s

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 9

Listing 1.3: Program statements.

1 int i;
2 int n;
3 int s;
4
5 s = 0;
6 n = _input_f0[_ioff_f0++];
7
8 if (n == 0)
9 return 0;

10
11 for (i=1; i < n; i++){
12 s = s + i;
13 }

Listing 1.4: Program statements relaxed.

1 //main scope
2 bool _rv1, _rv2, _rv3, _rv5 ;
3 bool _rv6[UNWIND],..., _rv8[UNWIND] ;
4 int _los ; // loop1 offset
5
6 //test scope
7 bool _ev4 ;
8 int i,n,s;
9 _los=1 ;

10
11 if (_rv1) s = 0;
12 if (_rv2) n = _input_f0[_ioff_f0++];
13
14 if (_rv3 ? (n == 0) : _ev4)
15 return 0;
16
17 for (_rv5 ? (i = 1) : 1 ;
18 !_rv6[_los] || (i<n);
19 _rv8[_los] ? i++ : 1, _los++){
20 if (_rv7[_los]) s = s + i;
21 }

original variables. For this step, CFaults needs to receive a maximum number
of iterations that the program should be unwound.

The relaxation process introduces relaxation variables that deactivate or ac-
tivate program components. This process involves four distinct relaxation rules
for: (1) conditions of if-statements, (2) expression lists (e.g., an expression list
executed at the beginning of a for-loop), (3) loop conditions, and (4) other pro-
gram statements.

Example 2. Listings 1.3 shows a code snippet that sums all the numbers between
1 and n. Listings 1.4 depicts the same program statements after undergoing
relaxation by CFaults. For the sake of simplicity, all relaxation variables’ and
offsets’ names were simplified.

In more detail, the rule for relaxing a general program statement is to envelop
the statement with an if-statement, whose condition is a relaxation variable.
For example, consider lines 5 and 6 in the program on Listings 1.3. These lines
are relaxed by CFaults using relaxation variables _rv1 and _rv2 respectively,
appearing as lines 11 and 12 on Listings 1.4.

Furthermore, when relaxing if-statements, the statements inside the then
and else blocks adhere to the previously explained relaxation rule. However, the
conditions of if-statements are relaxed using a ternary operator, as shown in
line 14 of Listings 1.4. Note that if the relaxation variable is assigned true, then
the original if condition is executed. Otherwise, a different relaxation variable
(e.g., _ev4 in Listings 1.4) determines whether the program execution enters the
then-block or the else-block (if one exists). These relaxation variables (else’s
relaxation variables) are local to each failing test scope and enable different tests
to determine whether to enter the then or else-block.

When handling expression lists, CFaults adopts a comparable strategy to
that of generic program statements, enclosing each expression within a ternary

10 P. Orvalho et al.

operator instead of an if-statement. If the program component is deactivated,
the expression is replaced by 1. For example, the initialization of variable i in line
11 of Listings 1.3 is relaxed into the ternary operation in line 17 of Listings 1.4.

Lastly, all relaxation variables inside a loop are Boolean vectors to relax state-
ments within a loop. Each entry of these vectors relaxes the loop’s statements for
a given iteration. The maximum number of iterations of the loops is defined by
the CFaults user. CFaults follows a similar approach for inner loops, creating
arrays of arrays. Thus, for simple program statements within a loop, CFaults
encapsulates them with if-statements, with the relaxation variables indexed to
the iteration number. Line 20 of Listings 1.4 illustrates a relaxed statement inside
a loop. The loop’s condition is relaxed by implication of the relaxation variable,
as demonstrated in line 18 of Listings 1.4. Furthermore, each loop has its own
offsets to index relaxation variables. These offsets are initialized just before the
loop and incremented at the end of each iteration (e.g., line 19 in Listing 1.4).

When handling auxiliary functions, CFaults declares the relaxation vari-
ables needed in the main scope of the program and passes these variables as
parameters. Hence, CFaults ensures that the same variables are used through-
out the auxiliary functions’ calls.

Listing 1.5 depicts the program resulting from the instrumentalization pro-
cess of Listing 1.2 performed by CFaults. The same program components (state-
ments/instructions) across different failing test scopes are assigned the same
relaxation variable declared in the main scope. Consequently, if a relaxation
variable is set to 0, the corresponding program component is deactivated across
all test executions. Additionally, the relaxation variables are left uninitialized,
allowing CFaults to determine the minimal number of faulty components re-
quiring deactivation. Note that relaxation variables are not declared as global
variables but as local variables within the main scope. This is to prevent the C
compiler from automatically initializing all these variables to 0.

CBMC. After unrolling and instrumentalizing the C program, CFaults in-
vokes CBMC, a bounded model checker for C [5]. CBMC initially transforms
the unrolled and relaxed program into Static Single Assignment (SSA) form, an
intermediate representation ensuring that variables are assigned values only once
and are defined before use [9]. SSA achieves this by converting existing variables
into multiple versions, each uniquely representing an assignment. Next, CBMC
translates the SSA representation into a CNF formula, which represents the trace
formula of the program. During the CNF formula generation, CBMC negates
the program’s assertion (¬(¬A1 ∨ · · · ∨ ¬Am)) to compute a counter-example.
Moreover, the CNF formula, ϕ, encodes each failing test’s input (Ii), assertion
(Ai), and all execution paths of the unrolled and relaxed incorrect program en-
coded by the trace formula (P), i.e., ϕ = (I1 ∧ . . . ∧ Im) ∧ P ∧ (A1∧· · ·∧Am).
Thus, if ϕ is SAT , an assignment exists that activates or deactivates each relax-
ation variable and makes all failing test assertions true. Hence, each satisfiable
assignment is a diagnosis of the C program, considering all failing tests.

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 11

Listing 1.5: Instrumentalized program.

1 //global vars
2 int main(){
3 bool _rv1 , _rv2 , ..., _rv12 ;
4 scope_0:{
5 bool _ev5 , _ev8 , _ev11 ;
6 int f_0, s_0, t_0;
7 if (_rv1) f_0 = _input_f0[_ioff_f0++];
8 if (_rv2) s_0 = _input_f0[_ioff_f0++];
9 if (_rv3) t_0 = _input_f0[_ioff_f0++];

10 if (_rv4 ? ((f_0 < s_0) && (f_0 >= t_0)) : _ev5){
11 if (_rv6) _ooff_0 = printInt(_out_0, _ooff_0, f_0);
12 }
13 if (_rv7 ? ((f_0 > s_0) && (s_0 <= t_0)) : _ev8){
14 if (_rv9) _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 }
16 if (_rv10 ? ((f_0 > t_0) && (s_0 > t_0)) : _ev11){
17 if (_rv12) _ooff_0 = printInt(_out_0, _ooff_0, t_0);
18 }
19 goto scope_1;
20 }
21 // scope_1 and scope_2
22 final_step:
23 assert(strcmp(_out_0, "3") != 0 || ... // other assertions);
24 }

MaxSAT Encoder. Let ϕ denote the CNF formula generated by CBMC in
the previous step. Next, CFaults generates a weighted partial MaxSAT formula
(H,S) to maximize the satisfaction of relaxation variables in the program, aiming
to minimize the necessary code alterations. The set of hard clauses is defined by
CBMC’s CNF formula (i.e., H = ϕ), while the soft clauses consist of unit clauses
representing relaxation variables used to instrument the C program, expressed as
S =

∧
c∈C (rvc). Additionally, we assign a hierarchical weight to each relaxation

variable based on the height of its sub-AST (Abstract Syntax Tree). For instance,
in the case of an if-statement without an else-block, the relaxation variable
for its condition will be assigned a weight equal to the sum of the weights of the
relaxation variables within the then-block. Furthermore, to prioritize the identi-
fication of faulty statements within the program’s logic over evaluating issues in
the input/output, these statements (such as scanf and printf) are assigned a
significantly higher cost compared to other program statements. Moreover, due
to the use of hierarchical weights in the relaxation variables, CFaults enumer-
ates all MaxSAT solutions to identify all subset-minimal diagnoses since there
can be more than one MaxSAT solution (with the same cost) that differ in the
number of relaxed program statements.

Oracle. CFaults invokes a MaxSAT solver to determine the program’s minimal
set of faulty statements, aligning with the principles of Model-Based Diagnosis
(MBD) theory. By consolidating all failing tests into a unified, unrolled, and
instrumentalized program, the MaxSAT solution identifies the minimum subset
of statements requiring removal to fulfil the assertions of all failing tests.

12 P. Orvalho et al.

Refinement. The standard Model-Based Diagnosis (MBD) theory focuses on
faulty components (program statements) whose removal can rectify the system
(program’s assertions). However, addressing program faults in software may ne-
cessitate introducing, relocating, or replacing statements. Hence, CFaults in-
corporates a refinement step that introduces nondeterminism into the program,
enabling the Oracle to simulate actions such as introducing, reallocating or re-
placing existing program statements. During the first iteration of CFaults, the
refinement step is invoked to introduce non-determinism, with the aim of mini-
mizing the number of faulty statements. This step can improve fault localization
by conducting a more detailed analysis of previously identified faulty statements.
For example, in the scenario outlined in Example 1, refining line 5 into

if ((_rv1? (f < s) : nondet_bool()) && (_rv2? (f >= t) : nondet_bool()))

enables CFaults to determine that only the left part of the binary operation
(f < s) is faulty, while the right part remains unaffected. This fine-grained ap-
proach allows for more precise detection of program faults. When the refinement
step is triggered, CFaults instrumentalizes the program again, introducing non-
determinism exclusively to the statements previously identified as faulty during
the initial Oracle call. Through this process, CFaults aims to reduce the set of
faulty program components by executing them or assigning them to nondeter-
ministic functions. All remaining program components are executed, meaning
their relaxation variables are activated during this step.

5 Experimental Results

All of the experiments were conducted on an Intel(R) Xeon(R) Silver computer
with 4210R CPUs @ 2.40GHz running Linux Debian 10.2, using a memory limit
of 32 GB and a timeout of 3600s, for each program. CFaults has been evalu-
ated using two distinct benchmarks of C programs: TCAS [10] and C-Pack-
IPAs [27]. TCAS stands out as a well-known program benchmark extensively
utilized in the fault localization literature [18,21]. This benchmark comprises a C
program from Siemens and 41 versions with intentionally introduced faults, with
known positions and types of these faults. Conversely, C-Pack-IPAs is a set of
student programs collected during an introductory programming course. For this
evaluation, we used the first lab class of C-Pack-IPAs, which consists of ten
programming assignments, comprising 486 faulty programs and 799 correct im-
plementations. C-Pack-IPAs has proven successful in evaluating various works
across program analysis [32], program transformation [29], and clustering [28].

CFaults uses pycparser [33] for unrolling and instrumentalizing C pro-
grams. Additionally, CBMC version 5.11 is used to encode C programs into
CNF formulas. Furthermore, since the source code of BugAssist and SNIPER
is either unavailable or no longer maintained (resulting in compilation and link-
ing issues), prototypes of their algorithms were implemented. It is worth noting
that the original version of SNIPER could only analyze programs that utilized
a subset of ANSI-C, lacked support for loops and recursion, and could only par-
tially handle global variables, arrays, and pointers. In this work, both SNIPER

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 13

Benchmark: TCAS
Valid

Diagnosis Memouts Timeouts

BugAssist 41 (100.0%) 0 (0.0%) 0 (0.0%)
SNIPER 7 (17.07%) 34 (82.93%) 0 (0.0%)
CFaults 41 (100.0%) 0 (0.0%) 0 (0.0%)

CFaults-Refined 41 (100.0%) 0 (0.0%) 0 (0.0%)

Benchmark: C-Pack-IPAs
Valid

Diagnosis Memouts Timeouts

BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)
CFaults 483 (99.38%) 1 (0.21%) 2 (0.41%)

CFaults-Refined 482 (99.18%) 1 (0.21%) 3 (0.62%)

Table 3: BugAssist, SNIPER and CFaults fault localization results.

and BugAssist handle ANSI-C programs, as their algorithms are built on top
of CFaults’s unroller and instrumentalizer modules. For the MaxSAT oracle,
RC2Stratified [15] from the PySAT toolkit [14] (v. 0.1.7.dev19) was used.

Furthermore, all three FBFL algorithms evaluated (CFaults, BugAssist,
and SNIPER) consistently generate diagnoses that are consistent with (5), in-
dicating that all proposed diagnoses undergo validation by CBMC once the al-
gorithm provides a diagnosis. However, this validation primarily serves to verify
diagnoses generated by BugAssist, as it has the capability to produce diagnoses
that may not align with all failing test cases. In contrast, CFaults’ MaxSAT
solution, by definition, aligns with all observations, and SNIPER’s aggregation
method (Cartesian product) produces only valid diagnoses, although they may
not always be subset-minimal. When considering BugAssist, we iterate through
all computed diagnoses based on BugAssist’s voting score, until we identify one
diagnosis that is consistent with all observations, i.e., conforms to (5).

Table 3 provides an overview of the results obtained using SNIPER, BugAs-
sist, and CFaults on the two benchmarks of C programs. The TCAS program
comprises approximately 180 lines of code and has a maximum of 131 failing tests
for each program. This leads SNIPER to reach the memory limit of 32GB for
almost 83% of the programs when aggregating the sets of MCSes computed for
each failing test. Additionally, a higher rate of timeouts is observed for SNIPER
and BugAssist than for CFaults. Figures 2a and 2b depict cactus plots that
present the CPU time spent on fault localization in each program (y-axis) ver-
sus the number of programs with all faults successfully localized (x-axis) using
BugAssist, SNIPER, and CFaults (with and without refinement) on TCAS
and C-Pack-IPAs, respectively. Notably, CFaults generally exhibits faster per-
formance compared to BugAssist and SNIPER across both benchmarks. In
Figure 2a, SNIPER’s performance is due to its memout rate on TCAS.

In TCAS, CFaults, whether invoking the refinement step or not, identi-
fies faults in the entire dataset. However, in C-Pack-IPAs, CFaults localizes
faults in one additional program when the refinement step is not called. Even
if the refinement step reaches the time limit, CFaults still possesses a subset-
minimal diagnosis from the preceding step that has not undergone refinement.
The refinement step slightly slows down CFaults, as shown in Figures 2a and
2b. Nonetheless, Figure 2c illustrates a scatter plot comparing the optimum
costs (MaxSAT solution’s cost) achieved by CFaults with and without call-
ing the refinement step on C-Pack-IPAs. Each point on this plot represents a
faulty program, where the x-value (resp. y-value) represents the optimum cost
of CFaults’ with refinement (resp. without refinement) diagnosis. If a point

14 P. Orvalho et al.

0 10 20 30 40
#Programs

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

)

CFaults
CFaults-Refined
BugAssist
SNIPER

(a) Time Performance on TCAS.

325 350 375 400 425 450 475
#Programs

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

)

CFaults
CFaults-Refined
BugAssist
SNIPER

(b) Time Performance on C-Pack-IPAs.

100 101 102 103 104

CFaults-Refined

100

101

102

103

104

CF
au

lts

memout/timeout

m
em

ou
t/t

im
eo

ut

(c) Costs of refined diag-
noses on C-Pack-IPAs.

100 101 102 103 104

CFaults

100

101

102

103

104

Bu
gA

ss
ist

memout/timeout

m
em

ou
t/t

im
eo

ut

(d) Costs of diagnoses on C-
Pack-IPAs.

100 101 102 103 104 105

CFaults

100

101

102

103

104

105

SN
IP

ER

memout/timeout

m
em

ou
t/t

im
eo

ut

(e) #Diagnoses generated
on C-Pack-IPAs.

Fig. 2: Comparison between BugAssist’s, SNIPER’s and CFaults’ diagnoses.

lies above the diagonal, it indicates that a non-refined diagnosis has a higher
cost than a refined diagnosis for the same program. Therefore, while the refine-
ment step may marginally slow down CFaults, it enables CFaults to identify
smaller diagnoses at a reduced cost in approximately 16% of C-Pack-IPAs’s
programs. Moreover, this observation was not noted in the TCAS dataset, as
each program contains a maximum of two faults, and the refinement step did
not yield improved outcomes in this particular dataset.

Additionally, Figure 2d illustrates a scatter plot comparing the diagnoses’
costs achieved by CFaults (x-axis) against BugAssist (y-axis) on C-Pack-
IPAs. BugAssist fails to provide an optimal diagnosis in almost 6% of cases.
In the TCAS benchmark, although BugAssist manages to localize faults in
all programs, it yields a non-optimal diagnosis in 10% of the programs. Fur-
thermore, Figure 2e depicts a scatter plot comparing the number of diagnoses
generated by CFaults (x-axis) against SNIPER (y-axis). While CFaults needs
to enumerate all MaxSAT solutions due to the weighted MaxSAT formula, it is
evident that SNIPER generates significantly more diagnoses than CFaults.
This discrepancy suggests that SNIPER overlooks the possibility of redundant
diagnoses being computed. The number of such redundant diagnoses is much
larger than the subset-minimal diagnoses generated by CFaults. Figure 2e il-

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 15

lustrates that in some instances, SNIPER may enumerate up to 100K diagnoses,
whereas CFaults generates less than 10.

As a validation step for our implementation, we analyzed all three fault lo-
calization methods on the collection of 799 correct programs in C-Pack-IPAs.
This was done to ensure that all methods yielded zero faults for all correct imple-
mentations of each programming exercise. Moreover, we conducted a comparison
between CFaults and the HSD algorithm [16] (see Section 3) on the ISCAS85
dataset [13], which is a widely studied collection of single-fault circuits. It is
worth noting that HSD’s implementation currently only supports fault localiza-
tion in circuits. We encountered no performance issues during this comparison,
and both approaches successfully localized all faults within each circuit.

6 Related Work

Fault localization (FL) techniques typically fall into two main families: spectrum-
based (SBFL) and formula-based (FBFL). SBFL methods [1,38,26,39,40,2] es-
timate the likelihood of a statement being faulty based on test coverage in-
formation from both passing and failing test executions. While SBFL tech-
niques are generally fast, they may lack precision, as not all identified state-
ments are likely to be the cause of failures [23,35]. In contrast, FBFL ap-
proaches [17,18,21,11,20,12,41,42,19] are considered exact. FBFL methods en-
code the fault localization problem into several optimization problems aimed at
identifying the minimum number of faulty statements within a program. Typi-
cally, these methods perform a MaxSAT call for each failing test, allowing them
to individually identify a minimal set of faults for each failing test case rather
than simultaneously addressing all failing test cases. Program slicing [37,35,43]
has also emerged as a technique for localizing faults within programs. A more
syntactic FBFL approach [35] is to use program slicing to enumerate all mini-
mal sets of repairs for a given faulty program. Another method for identifying
the causes of faulty program behaviour involves analyzing the variances between
various versions of the software [43]. Refinement has a long-standing tradition
in verification; particularly for refining abstractions of reachable states [7,6,4].
In that sense, our form of refinement is different because it enables us to more
precisely pinpoint faults of the user, at the sub-expression level.

7 Conclusion

This paper introduces a novel formula-based fault localization technique for C
programs capable of addressing any number of faults. Leveraging Model-Based
Diagnosis (MBD) with multiple observations, CFaults consolidates all failing
test cases into a unified MaxSAT formula, ensuring consistency in the fault
localization process. Experimental evaluations on TCAS and C-Pack-IPAs,
show that CFaults is faster than other FBFL approaches like BugAssist and
SNIPER. Furthermore, CFaults only generates minimal diagnoses of faulty
statements, while other methods tend to produce redundant diagnoses.

16 P. Orvalho et al.

Data Availability Statement

CFaults’ implementation, our prototypes for BugAssist and SNIPER, and
the evaluation benchmarks, TCAS [10] and C-Pack-IPAs [30], used for the
evaluation in this paper, are publicly available on Zenodo [31].

Acknowledgements

This work was partially supported by Portuguese national funds through FCT,
under projects UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/2020), PTDC/-
CCI-COM/2156/2021 (DOI: 10.54499/PTDC/CCI-COM/2156/2021) and 2022.-
03537.PTDC (DOI: 10.54499/2022.03537.PTDC) and grant SFRH/BD/07724/-
2020 (DOI: 10.54499/2020.07724.BD). PO acknowledges travel support from
the European Union’s Horizon 2020 research and innovation programme under
ELISE Grant Agreement No 951847. This work was also supported by the MEYS
within the program ERC CZ under the project POSTMAN no. LL1902 and co-
funded by the European Union under the project ROBOPROX (reg. no. CZ-
.02.01.01/00/22_008/0004590). This article is part of the RICAIP project that
has received funding from the EU’s Horizon 2020 research and innovation pro-
gram under grant agreement No 857306.

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault
localization. In: ASE 2009, 24th IEEE/ACM International Conference on Auto-
mated Software Engineering, Auckland, New Zealand, November 16-20, 2009. pp.
88–99. IEEE Computer Society (2009). https://doi.org/10.1109/ASE.2009.25,
https://doi.org/10.1109/ASE.2009.25

2. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C.: A practical
evaluation of spectrum-based fault localization. J. Syst. Softw. 82(11), 1780–
1792 (2009). https://doi.org/10.1016/J.JSS.2009.06.035, https://doi.org/
10.1016/j.jss.2009.06.035

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model
checking, 2nd Edition. MIT Press (2018), https://mitpress.mit.edu/books/
model-checking-second-edition

5. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 2988, pp. 168–176. Springer (2004). https://doi.org/10.1007/
978-3-540-24730-2_15, https://doi.org/10.1007/978-3-540-24730-2_15

6. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction
of ANSI-C programs using SAT. Formal Methods Syst. Des. 25(2-3), 105–127
(2004). https://doi.org/10.1023/B:FORM.0000040025.89719.F3, https://doi.
org/10.1023/B:FORM.0000040025.89719.f3

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/J.JSS.2009.06.035
https://doi.org/10.1016/J.JSS.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1023/B:FORM.0000040025.89719.F3
https://doi.org/10.1023/B:FORM.0000040025.89719.F3
https://doi.org/10.1023/B:FORM.0000040025.89719.f3
https://doi.org/10.1023/B:FORM.0000040025.89719.f3

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 17

7. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: SATABS: sat-based predi-
cate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems, 11th International Con-
ference, TACAS 2005, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceed-
ings. Lecture Notes in Computer Science, vol. 3440, pp. 570–574. Springer (2005).
https://doi.org/10.1007/978-3-540-31980-1_40, https://doi.org/10.1007/
978-3-540-31980-1_40

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and ver-
ilog programs using bounded model checking. In: Proceedings of the 40th De-
sign Automation Conference, DAC 2003, Anaheim, CA, USA, June 2-6, 2003.
pp. 368–371. ACM (2003). https://doi.org/10.1145/775832.775928, https:
//doi.org/10.1145/775832.775928

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991). https://doi.org/10.1145/
115372.115320, https://doi.org/10.1145/115372.115320

10. Do, H., Elbaum, S.G., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empir. Softw. Eng.
10(4), 405–435 (2005). https://doi.org/10.1007/S10664-005-3861-2

11. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015. pp. 229–239 (2015)

12. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. In: Bloem, R., Roveri, M., Somenzi, F. (eds.) Proceedings of the Workshop
on Verification and Debugging, V&D@FLoC 2006, Seattle, WA, USA, August
21, 2006. Electronic Notes in Theoretical Computer Science, vol. 174, pp. 95–
111. Elsevier (2006). https://doi.org/10.1016/J.ENTCS.2006.12.032, https:
//doi.org/10.1016/j.entcs.2006.12.032

13. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: A
case study in reverse engineering. IEEE Des. Test Comput. 16(3), 72–80 (1999).
https://doi.org/10.1109/54.785838, https://doi.org/10.1109/54.785838

14. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9-12, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10929,
pp. 428–437. Springer (2018). https://doi.org/10.1007/978-3-319-94144-8_
26, https://doi.org/10.1007/978-3-319-94144-8_26

15. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

16. Ignatiev, A., Morgado, A., Weissenbacher, G., Marques-Silva, J.: Model-based di-
agnosis with multiple observations. In: Kraus, S. (ed.) Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019. pp. 1108–1115. ijcai.org (2019). https://doi.
org/10.24963/IJCAI.2019/155, https://doi.org/10.24963/ijcai.2019/155

17. Jose, M., Majumdar, R.: Bug-assist: Assisting fault localization in ANSI-C pro-
grams. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification
- 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,

https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/775832.775928
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/S10664-005-3861-2
https://doi.org/10.1007/S10664-005-3861-2
https://doi.org/10.1016/J.ENTCS.2006.12.032
https://doi.org/10.1016/J.ENTCS.2006.12.032
https://doi.org/10.1016/j.entcs.2006.12.032
https://doi.org/10.1016/j.entcs.2006.12.032
https://doi.org/10.1109/54.785838
https://doi.org/10.1109/54.785838
https://doi.org/10.1109/54.785838
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.24963/IJCAI.2019/155
https://doi.org/10.24963/IJCAI.2019/155
https://doi.org/10.24963/IJCAI.2019/155
https://doi.org/10.24963/IJCAI.2019/155
https://doi.org/10.24963/ijcai.2019/155

18 P. Orvalho et al.

2011. Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 504–
509. Springer (2011). https://doi.org/10.1007/978-3-642-22110-1_40, https:
//doi.org/10.1007/978-3-642-22110-1_40

18. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011. pp. 437–446. ACM
(2011)

19. Könighofer, R., Bloem, R.: Automated error localization and correction for im-
perative programs. In: Bjesse, P., Slobodová, A. (eds.) International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX,
USA, October 30 - November 02, 2011. pp. 91–100. FMCAD Inc. (2011), http:
//dl.acm.org/citation.cfm?id=2157671

20. Lamraoui, S., Nakajima, S.: A formula-based approach for automatic fault lo-
calization of imperative programs. In: Merz, S., Pang, J. (eds.) Formal Methods
and Software Engineering - 16th International Conference on Formal Engineering
Methods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceed-
ings. Lecture Notes in Computer Science, vol. 8829, pp. 251–266. Springer (2014).
https://doi.org/10.1007/978-3-319-11737-9_17, https://doi.org/10.1007/
978-3-319-11737-9_17

21. Lamraoui, S., Nakajima, S.: A formula-based approach for automatic fault lo-
calization of multi-fault programs. J. Inf. Process. 24(1), 88–98 (2016). https:
//doi.org/10.2197/IPSJJIP.24.88, https://doi.org/10.2197/ipsjjip.24.88

22. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008). https://doi.org/
10.1007/S10817-007-9084-Z, https://doi.org/10.1007/s10817-007-9084-z

23. Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Le Traon, Y.: You cannot
fix what you cannot find! an investigation of fault localization bias in benchmarking
automated program repair systems. In: 2019 12th IEEE conference on software
testing, validation and verification (ICST). pp. 102–113. IEEE (2019)

24. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Yang, Q., Wooldridge, M.J. (eds.) Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp. 1966–1972.
AAAI Press (2015), http://ijcai.org/Abstract/15/279

25. Metodi, A., Stern, R., Kalech, M., Codish, M.: A novel sat-based approach to model
based diagnosis. J. Artif. Intell. Res. 51, 377–411 (2014). https://doi.org/10.
1613/JAIR.4503, https://doi.org/10.1613/jair.4503

26. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software diag-
nosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (2011). https://doi.
org/10.1145/2000791.2000795, https://doi.org/10.1145/2000791.2000795

27. Orvalho, P., Janota, M., Manquinho, V.: C-Pack of IPAs: A C90 Program
Benchmark of Introductory Programming Assignments. CoRR abs/2206.08768
(2022). https://doi.org/10.48550/arXiv.2206.08768, https://doi.org/10.
48550/arXiv.2206.08768

28. Orvalho, P., Janota, M., Manquinho, V.: InvAASTCluster: On Applying
Invariant-Based Program Clustering to Introductory Programming Assignments.
CoRR abs/2206.14175 (2022). https://doi.org/10.48550/ARXIV.2206.14175,
https://doi.org/10.48550/arXiv.2206.14175

29. Orvalho, P., Janota, M., Manquinho, V.: MultIPAs: Applying Program Transfor-
mations to Introductory Programming Assignments for Data Augmentation. In:

https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
http://dl.acm.org/citation.cfm?id=2157671
http://dl.acm.org/citation.cfm?id=2157671
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.2197/ipsjjip.24.88
https://doi.org/10.1007/S10817-007-9084-Z
https://doi.org/10.1007/S10817-007-9084-Z
https://doi.org/10.1007/S10817-007-9084-Z
https://doi.org/10.1007/S10817-007-9084-Z
https://doi.org/10.1007/s10817-007-9084-z
http://ijcai.org/Abstract/15/279
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1613/jair.4503
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.48550/ARXIV.2206.14175
https://doi.org/10.48550/ARXIV.2206.14175
https://doi.org/10.48550/arXiv.2206.14175

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 19

Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022. pp.
1657–1661. ACM, Singapore (2022). https://doi.org/10.1145/3540250.3558931

30. Orvalho, P., Janota, M., Manquinho, V.: C-Pack of IPAs: A C90 Program Bench-
mark of Introductory Programming Assignments. In: International Workshop
on Automated Program Repair, APR@ICSE 2024, Lisbon, Portugal, April 20,
2024. pp. – (2024). https://doi.org/10.1145/3643788.3648010, https://doi.
org/10.1145/3643788.3648010

31. Orvalho, P., Janota, M., Manquinho, V.: CFaults: Model-Based Diagnosis for Fault
Localization in C with Multiple Test Cases (Jun 2024). https://doi.org/10.
5281/zenodo.12510220, https://github.com/pmorvalho/CFaults

32. Orvalho, P., Piepenbrock, J., Janota, M., Manquinho, V.M.: Graph neural net-
works for mapping variables between programs. In: ECAI 2023 - 26th European
Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Appli-
cations, vol. 372, pp. 1811–1818. IOS Press, Poland (2023). https://doi.org/10.
3233/FAIA230468, https://doi.org/10.3233/FAIA230468

33. pycparser: . https://github.com/eliben/pycparser (2024), [Online; accessed 18-
April-2024]

34. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1),
57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2, https://doi.
org/10.1016/0004-3702(87)90062-2

35. Rothenberg, B., Grumberg, O.: Must fault localization for program repair. In:
Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12225, pp. 658–680. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8_33, https://doi.org/10.1007/
978-3-030-53291-8_33

36. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Formal Methods
in Computer-Aided Design, 7th International Conference, FMCAD 2007, Austin,
Texas, USA, November 11-14, 2007, Proceedings. pp. 13–19. IEEE Computer So-
ciety (2007). https://doi.org/10.1109/FAMCAD.2007.26, https://doi.org/10.
1109/FAMCAD.2007.26

37. Soremekun, E.O., Kirschner, L., Böhme, M., Zeller, A.: Locating faults
with program slicing: an empirical analysis. Empir. Softw. Eng. 26(3), 51
(2021). https://doi.org/10.1007/S10664-020-09931-7, https://doi.org/10.
1007/s10664-020-09931-7

38. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for ef-
fective fault localization. J. Syst. Softw. 83(2), 188–208 (2010). https://doi.org/
10.1016/J.JSS.2009.09.037, https://doi.org/10.1016/j.jss.2009.09.037

39. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The dstar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014). https://doi.org/
10.1109/TR.2013.2285319, https://doi.org/10.1109/TR.2013.2285319

40. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016). https://doi.org/
10.1109/TSE.2016.2521368, https://doi.org/10.1109/TSE.2016.2521368

41. Wotawa, F., Nica, M., Moraru, I.: Automated debugging based on a constraint
model of the program and a test case. J. Log. Algebraic Methods Program. 81(4),
390–407 (2012). https://doi.org/10.1016/J.JLAP.2012.03.002, https://doi.
org/10.1016/j.jlap.2012.03.002

https://doi.org/10.1145/3540250.3558931
https://doi.org/10.1145/3540250.3558931
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.5281/zenodo.12510220
https://doi.org/10.5281/zenodo.12510220
https://doi.org/10.5281/zenodo.12510220
https://doi.org/10.5281/zenodo.12510220
https://github.com/pmorvalho/CFaults
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://github.com/eliben/pycparser
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1007/S10664-020-09931-7
https://doi.org/10.1007/S10664-020-09931-7
https://doi.org/10.1007/s10664-020-09931-7
https://doi.org/10.1007/s10664-020-09931-7
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1016/j.jss.2009.09.037
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1016/J.JLAP.2012.03.002
https://doi.org/10.1016/J.JLAP.2012.03.002
https://doi.org/10.1016/j.jlap.2012.03.002
https://doi.org/10.1016/j.jlap.2012.03.002

20 P. Orvalho et al.

42. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Palsberg,
J., Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005. pp. 351–363. ACM (2005). https://doi.org/10.1145/
1040305.1040334, https://doi.org/10.1145/1040305.1040334

43. Zeller, A.: Yesterday, my program worked. today, it does not. why? In:
ESEC/FSE’99, 7th European Software Engineering Conference, Held Jointly with
the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering
1999. Lecture Notes in Computer Science, vol. 1687, pp. 253–267. Springer (1999)

https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334

	CFaults: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases

