Highlights

MENTOR: Fixing Introductory Programming Assignments With
Formula-Based Fault Localization and LLM-Driven Program Repair

Pedro Orvalhdl, Mikol4s Janota, Vasco Manquinho

« MENTOR addresses the Automated Program Repair (APR) problem,
for the C programming language, through an LLM-driven Counter-
example-Guided Inductive Synthesis (CEGIS) approach.

« MENTOR employs MaxSAT-based Fault Localization to guide and
minimize LLMS’ patches to incorrect programs by feeding them bug-free
program sketches.

o« MENTOR combines state-of-the-art modules for program clustering,
variable alignment, and MaxSAT-based fault localization; within an
LLM-driven program fixer that orchestrates the repair process.

o Experimental results show that our approach enables all six evaluated
LLMs to fix more programs and produce smaller patches compared to
alternative configurations and symbolic tools.

 All code and experiments are publicly available on Zenodo [1].

'Part of this work was conducted at INESC-ID, Instituto Superior Técnico, U. Lisboa.

MENTOR: Fixing Introductory Programming
Assignments With Formula-Based Fault Localization and
LLM-Driven Program Repair

Pedro Orvalho'®, Mikol4s Janota®, Vasco Manquinho®

@ Department of Computer Science, University of Oxford, Oxford, United Kingdom
YCIIRC, Czech Technical University in Prague, Prague, Czech Republic
¢INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Abstract

The increasing demand for programming education has led to online evalua-
tions like MOOCsS, which rely on introductory programming assignments (IPAs).
A major challenge in these courses is providing personalized feedback at
scale. This paper introduces MENTOR, a semantic automated program
repair (APR) framework designed to fix faulty student programs. MENTOR
validates repairs through execution on a test suite, and returns the repaired
program or highlights faulty statements.

Unlike symbolic repair tools like CLARA and VERIFIX, which require
correct implementations with identical control flow graphs (CFGs), MEN-
TOR’s LLM-based approach enables flexible repairs without strict structural
alignment. MENTOR clusters successful submissions regardless of CFGs,
and employs a Graph Neural Network (GNN)-based variable alignment
module for enhanced accuracy. Next, MENTOR's fault localization module
leverages MaxSAT techniques to pinpoint buggy code segments precisely.
Finally, MENTOR’s program fixer integrates Formal Methods (FM) and
Large Language Models (LLMS) through a Counterexample Guided Inductive
Synthesis (CEGIS) loop, iteratively refining repairs. Experimental results
show that MENTOR significantly improves repair success rates, achieving
64.4%, far surpassing Verifix (6.3%) and Clara (34.6%). By merging formula-
based fault localization, and LLM-driven repair, MENTOR provides an
innovative, scalable framework for programming education.

IPart of this work was conducted at INESC-ID, Instituto Superior Técnico, U. Lisboa.

Keywords:
Automated Program Repair, Program Analysis, Formula-based Fault
Localization, LLM-Driven Program Repair, Computer-Aided Education.

1. Introduction

Every year, thousands of students enroll in programming-oriented courses.
With the rapid growth of Computer Science courses, providing personalized
and timely feedback on introductory programming assignments (IPAs) and
software projects has become a significant challenge, requiring substantial
time and effort from faculty [2].

Automated Program Repair (APR) has emerged as a promising solution
to this challenge, aiming to deliver automated, comprehensive, and person-
alized feedback to students about their programming errors [2], 3| 14} [5, [].
Traditional semantic APR techniques based on Formal Methods (FM), while
providing high-quality fixes, are often slow and may struggle when the correct
implementation diverges significantly from the erroneous one [7, [§]. These
APR approaches do not guarantee minimal repairs, as they align an incorrect
submission with a correct implementation for the same IPA. If the alignment
is not possible, these tools return a structural mismatch error, leaving the
program unrepaired. In the past decade, there has been a surge in Machine
Learning (ML) techniques for APR [9, [10, 11} 12], 13}, 14, [15]. ML-based
approaches require multiple correct implementations to generate high-quality
repairs, and need considerable time and resources to train on correct programs.
While these approaches generate repairs more quickly, they often produce
imprecise and non-minimal fixes [4].

More recently, Large Language Models (LLMS) trained on code (LLMCSs)
have shown great potential in generating program fixes [16] [17, 18] [19] 20} 2]
22, 23]. LLM-based APR can be performed using zero-shot learning [24], few-
shot learning [22] or fine-tuned models [18]. Fine-tuned models are the most
commonly used, where the model is trained for a specific task. In contrast,
zero-shot learning refers to the ability of a model to correctly perform a task
without having seen any examples of that task during training. Few-shot
learning refers to the LLMS’s ability to perform tasks correctly with only a
small number of examples provided. Furthermore, the ability to generalize
using zero or few-shot learning enables LLLMS to handle a wide range of tasks
without the need for costly retraining or fine-tuning. Nonetheless, few-shot

Table 1: Test-suite with three tests (¢o, t1, and t2). Given as input three numbers (numl,
num?2, and num3), each test should return the value in its respective output column.

Input
numl nuII)n2 num3 Output
to 1 2 3 3
t 6 2 1 6
ty -1 -2 -3 -1

learning can lead to larger fixes than necessary, as it is based on a limited
number of examples. Moreover, LLMS do not guarantee minimal repairs
and typically rewrite most of the student’s implementation to fix it, rather
than making minimal adjustments, making their fixes harder for students
to learn from.

In this work, we present MENTOR, a clustering-based semantic program
repair tool for the C programming language capable of providing automated
feedback for introductory programming exercises. MENTOR leverages
past student submissions to assist in repairing incorrect code. It combines
Mazimum Satisfiability (MaxSAT)-based fault localization with large language
models (LLMS), guiding them using bug-free program sketches. MENTOR’s
main objective is to repair buggy programs using correct implementations,
even when their control-flow graphs (CFGs) differ, a capability not supported
by state-of-the-art semantic repair tools.

1.1. Problem Description

Consider the program presented in Listing [I} which aims to determine
the maximum among three given numbers. Based on the test suite shown in
Table [I} the program is buggy as its output differs from the expected results.
The set of minimal faulty lines in this program includes lines 4 and 8, as these
two if conditions are incorrect. A good way to provide personalized feedback
to students on their IPAS is to highlight these two buggy lines. However, it
is essential to check these faults by fixing the program and evaluating the
repaired program against the test suite.

Using traditional Automated Program Repair (APR) tools for introduc-
tory programming assignments (IPAs) based on Formal Methods, such as
CLARA [2] or VERIFIX [3], the program in Listing |l| cannot be fixed within
90 seconds. CLARA takes too long to compute a ‘minimal’ repair by con-
sidering several correct implementations for the same IPA, while VERIFIX
returns a compilation error. Conversely, using state-of-the-art LLMS trained
for coding tasks (LLMCs), GRANITE [25] or CODEGEMMA [26], would in-

Listing 1: Semantically incorrect program.

Faulty lines: {4,8}. Listing 2: Reference implementation.

int main() {
int m1,m2,m3,m;
scanf ("%d%d%d",&m1,&m2,&m3) ;
m=ml>m2 7?7 ml : m2;
m=m3>m? m3 : m;
printf ("%d\n", m);

int main(){// finds maz of 3 numbers

int f,s,t;

scanf ("%d%d%d" ,&f ,&s,&t) ;

if (f < s && £ >= t)//fiz: f >= s
printf ("%d",£);

else if (s > f &% s >= t)
printf ("%d",s);

else if (t < f && t < s)

// fiz: t > fand t > s
printf ("%d",t);

return O;

© 0 N O GR W N

return O;

Listing 4: GRANITE’s fix using the
Listing 3: Program sketch with holes. program sketch.

int main(){

int f,s,t;

scanf ("}d%d%d",&f,&s,&t) ;

@ HOLE 1
printf ("%d",f);

else if (s > f && s >= t)
printf("%d",s);

@ [

@ HOLE 2 [d
printf ("/d",t);

int main(){

int f,s,t;

scanf ("}d%d%d", &f ,&s,&t) ;

if (f >= s && £ >= t)
printf ("%d",f);

else if (s > f && s >= t)
printf ("%d",s);

else
printf ("%d",t);

© 0 N O Us W N

=
o

return 0;

-
—

return O;

(-]
Jun
M
(-]

volve providing the description of the programming assignment and some
examples of input-output tests. Even with these features, neither LLM could
fix the buggy program in Listing [1| within 90 seconds when repeatedly testing
and refining their fixes. If the lecturer’s reference implementation shown in
Listing [2| is suggested as a reference in the prompt, both LLMS simply copy
the correct program, ignoring instructions not to do so.

Hence, symbolic approaches demand an excessive amount of time to
produce an answer, and LLMs, while fast, often produce incorrect fixes. Thus,
MENTOR aims to address the limitations of current state-of-the-art APR
frameworks for IPAS by combining the strengths of both approaches. State-
of-the-art Maximum Satisfiability (MaxSAT')-based Fault Localization [27]
can rigorously identify buggy statements, which can then be highlighted in
the LLM prompt to focus on the specific parts of the program that need
fixing. Listing |3| shows an example of a program sketch, which is a partially
incomplete program where each buggy statement from the original incorrect

program in Listing [1]is replaced with a @ HOLE @. Instructing the LLMS to
complete this program allows both GRANITE and CODEGEMMA to fix the
buggy program in a single interaction, returning the program in Listing [4]
Thus, MENTOR aims to repair a student’s incorrect submission without
relying on a correct solution with the same program structure, while also
minimizing changes to the student’s code, similar to symbolic approaches |2}, 3].

1.2. Paper Quverview and Contributions

Section [2 presents the basic definitions and notation used throughout
this paper. Next, Section [3| describes the architecture of MENTOR, which
consists of four main modules: (1) program clustering, (2) variable alignment,
(3) fault localization, and (4) program fixer. MENTOR employs state-of-the-
art tools at each stage: INVAASTCLUSTER [§] for clustering, a GNN-based
approach [15] for variable mapping, and CFAuLTS [27] for formula-based fault
localization. Furthermore, Section 4] describes our experimental results on
C-PACK-IPAs [28], a benchmark of IPAS. These experiments demonstrate
that MENTOR’s hybrid repair method, integrating Formal Methods (FM)-
based fault localization with LLMS, significantly enhances repair success
rates while yielding smaller, more precise fixes. This innovative approach
outperforms other existing repair strategies and state-of-the-art symbolic
tools. For instance, VERIFIX repairs only 6.3% of C-PACK-IPAS, and CLA-
RA achieves a repair rate of 34.6%. In contrast, depending on the prompt
configuration and the specific LLM utilized, MENTOR achieves impressive
repair rates, ranging from 37.3% to 64.4%. Finally, Section |5| reviews related
work, and the paper concludes in Section [6]

The main novelty of MENTOR, compared to our earlier work [29],
lies in its program fixer module, which integrates the outputs of three key
components: (1) cluster representatives, (2) variable mappings, and (3)
localized faulty statements. These elements are incorporated into structured
prompts that drive an LLM-based, counterexample-guided program repair
process. Furthermore, in addition to the research questions explored in our
earlier work, this paper introduces several new dimensions of analysis that
further advance the understanding of LLM-based program repair. Specifically,
in Section [4 we investigate: (i) the usefulness of providing LLMs with a
variable mapping between a buggy program and a correct implementation
of the same IPA (RQG6); (ii) the effectiveness of MENTOR in repairing
programs that CLARA fails to address due to control-flow mismatches (RQT);
(iii) how LLM repair performance is influenced by varying levels of program

5

complexity (RQ8); and (iv) the number of CEGIS iterations typically required
by LLMs to repair programs, and what this reveals about their repair efficiency
(RQ9). These additional research questions broaden the scope of our study
and provide new insights into the capabilities and limitations of LLM-based
automated program repair.

In summary, this work presents MENTOR, a semantic automated pro-
gram repair framework, for the C programming language, designed to provide
automated feedback in IPAS. This paper makes the following contributions:

« MENTOR addresses the Automated Program Repair (APR) problem
through an LLM-driven Counterexample-Guided Inductive Synthesis
(CEGIS) approach;

« MENTOR employs MaxSAT-based Fault Localization to guide and
minimize LLMS’ patches to incorrect programs by feeding them bug-free
program sketches.

« MENTOR combines state-of-the-art modules for program clustering [8],
variable alignment [15], and MaxSAT-based fault localization [27];
within an LLM-driven program fixer that orchestrates the repair pro-
cess.

o Experimental results show that our approach enables all six evaluated
LLMS to fix more programs and produce smaller patches compared to
alternative configurations and symbolic tools.

o All code and experiments will be made publicly available on GitHub:
https://github.com/pmorvalho/MENTOR, and on Zenodo [1].

2. Preliminaries
This section provides definitions used throughout this work.

Maximum Satisfiability (MaxSAT). The Boolean Satisfiability (SAT)
problem is the decision problem for propositional logic [30]. A propositional
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses
where each clause is a disjunction of literals. The Mazimum Satisfiability
(MaxSAT) problem is an optimization version of SAT, i.e., the goal is to find
an assignment that maximizes the number of satisfied clauses in a formula [31].

https://github.com/pmorvalho/MENTOR
https://github.com/pmorvalho/MENTOR

Basic Block (BB). A basic block is a linear sequence of program instructions
having one entry point (the first instruction executed) and one exit point (the
last instruction executed). It may, of course, have many predecessors and
many successors and may even be its own successor. Program entry blocks
might not have predecessors that are in the program; program terminating
blocks never have successors in the program [32].

Control dependence. A control dependence occurs between a statement and
a control predicate whose value dictates if the statement is executed or not [33].

Control flow path. A control flow path is defined by the order in which
program statements, instructions, and function calls are executed.

Control flow Graph (CFG). A control flow graph (CFG) is a directed
graph in which the nodes represent basic blocks, and the edges represent
control flow paths [32].

Program. A program is considered sequential, comprising standard state-
ments such as assignments, conditionals, loops, and function calls, each
adhering to their conventional semantics in C. A program P is deemed to
contain a bug when an assertion violation occurs during its execution with
input I. Conversely, if no assertion violation occurs, the program is considered
correct for input I. In cases where a bug is detected for input I, it is possible
to define an error trace, representing the sequence of statements executed by
program P on input I [27].

Abstract Syntax Tree (AST). An AST is a syntax tree in which each node
represents an operation, and the node’s children represent the arguments of
the operation for a given programming language described by a Context-Free
Grammar. An AST depicts a program’s grammatical structure [34].

Synthesis Problem. For a given program’s specification S (e.g., input-
output examples), G' a context-free grammar, and O be the semantics for a
particular Domain-specific language, the goal of program synthesis is to infer
a program P such that (1) the program is produced by G, (2) the program is
consistent with O and (3) P is consistent with .S [35] [36, [37].

Please refer to Aho et al. [34] for more context about context-free grammars
(CFGs), and Domain-specific language (DSL).

Semantic Program Repair. Given (T,G,O, P), let T be a set of input-
output examples (test suite), G be a grammar, O be the semantics for a
particular Domain-specific language, and P be a syntactically well-formed
program (i.e., sets of statements, instructions, expressions) consistent with G
and O but semantically erroneous for at least one of the input-output tests
(Lew Hthth,) €T 2 P(E,) #1,,).

The goal of Semantic Program Repair is to find a program P; by seman-
tically change a subset S; of P’s statements (S; C P) for another set of

statements S, consistent with G and O, such that,
Py =((P\51)US5)
and

v(tznv tiut) S T Pf@;n) = tfmt‘
Moreover, automated program repair tools typically perform program
synthesis to synthesize the set of program statements S; needed to fix the
erroneous program P [35] 138].

3. MENTOR

This section presents MENTOR, a semantic automated program repair
framework designed to provide automated feedback in introductory program-
ming assignments (IPAS).

The overall architecture of MENTOR is shown in Figure[I MENTOR
receives as input an incorrect submission for a given introductory programming
assignment (IPA), a test suite, and a set of IV correct submissions for the
same IPA. MENTOR is divided into five main modules: (1) program
clustering, (2) variable aligner, (3) fault localization, (4) program fixer, and
(5) decider. MENTOR starts by clustering, using INVAASTCLUSTER [§],
all correct submissions using these program’s sets of invariants and abstract
syntax trees (ASTS) as described in Section . Next, MENTOR employs
Graph Neural Networks (GNNS) to map the set of variables between each
cluster’s representative and the incorrect submission [I5] [39] based on the
ASTSs of both programs (see Section . Additionally, MENTOR uses
CFAuLTS [27], a state-of-the-art formula-based fault localization (FBFL)
technique for C programs capable of addressing multiple faults. CFAULTS,
described in Section [3.3] leverages Model-Based Diagnosis [40] with multiple

8

C t
Subr?:irsesfons { MENTOR K Clusters'

Representatives
Program
Clustering
Feedback

> [@]
Incorrect

Submission

</>
Submission

Test Repaired

Suite Fault Program N . PASSED ==
. . Decider — [

—ao Localization Faulty Fixer A E—

—al — FAILED H

—ao Y Statements ;

I :

Figure 1: Overview of MENTOR.

observations, integrating all failing test cases into a single MaxSAT formula
to ensure consistency in the fault localization process.

The program fixer module integrates all the features computed so far:
(1) cluster representatives, (2) variable mappings, and (3) localized faulty
statements. These features are incorporated into prompts to guide our
LLM-driven counterexample guided program repair process [29], described
in Section [3.4 Finally, in the decider module, MENTOR, checks if the
candidate program proposed by the program fixer is correct by evaluating it
against the provided test suite. If the candidate program remains incorrect,
the program fixer generates a new candidate. Otherwise, MENTOR returns
personalized feedback to students, either by providing the fixed program or
by highlighting the buggy statements in their code.

3.1. Program Clustering

To support the repair process, MENTOR aims to find a correct imple-
mentation for the same IPA that is structurally and semantically close to
a given buggy submission. Instead of exhaustively comparing all correct
submissions, MENTOR leverages INVAASTCLUSTER [§], a state-of-the-art
clustering tool for IPAS. INVAASTCLUSTER groups correct programs based
on their sets of program invariants and their anonymized abstract syntaz trees
(AASTSs), which are abstract syntax trees (ASTS) with variable and function
identifiers removed, preserving only type information.

InvAAST
Cluster

BoW
Maker

Incorrect
Submission ———»

K clusters’
Representatives

1 [

2[5

—=
K. </>

Inc. sub.

c

) Submission
Repalr . Repaired

Framework

</>

Figure 2: Finding the closest correct program, i.e., the closest correct program representative
to the incorrect submission vector representation.

The primary goal of using INVA ASTCLUSTER is to reduce the potentially
large set of correct programs into a manageable number of diverse clusters. For
each cluster, a single representative is selected, which is the program closest
to the cluster centroid in Euclidean space. INVAASTCLUSTER achieves this
by extracting structural features from each program’s AAST and semantic
features from its invariants. These features are combined into Bag-of-Words
vector representations, enabling clustering into a small number of clusters.
When a buggy program is submitted, INVAASTCLUSTER computes its
distance to each cluster representative and selects the closest one as the most
suitable candidate to guide the repair process. As illustrated in Figure |2 if the
incorrect program is closest to representative program C', INVAASTCLUSTER
returns C' to MENTOR for further analysis and repair guidance.

3.2. Variable Alignment

Since the problem of program equivalence, that is, determining whether
two programs exhibit the same behavior, is undecidable [41], repairing an
incorrect program based on a correct implementation is highly challenging.
To compare the faulty and correct programs, repair tools must first establish
a correspondence between their respective sets of variables. To address this,
MENTOR uses a state-of-the-art graph-based program representation to
map variables between incorrect and correct implementations. This repre-
sentation [15] captures structural information from the abstract syntax trees
(ASTS) of imperative programs and leverages graph neural networks (GNNs)
to learn how to align variables across program pairs.

10

Listing 5: Small example of a C code
block with an expression.

1 { // aand b are ints Types of edges:

2 a=a - b; AST -

3} Read
Write

Sibling >
Chronological

Variable Node .

(b) Our program representation for the snippet pre-
sented in Listing

O

(a) Part of the AST representation of Listing

Figure 3: AST and our graph representation for the small code snippet presented in
Listing@

Programs are represented as directed graphs to allow bidirectional infor-
mation flow in the GNN. These graphs are derived from the program’s AST
and are enriched with semantic information [I5]. Figure 3] shows the AST
for the code snippet in Listing [5] while Figure [3b] shows its corresponding
graph representation. Fach variable in the program is assigned a unique node,
and all occurrences of that variable are connected to it. For example, in
Figure the green nodes a and b represent unique variable nodes.

The graph includes five types of edges:

o Child edges (black): connect parent and child nodes in the AST and
are bidirectional.

o Sibling edges (red dashed): connect each child to its next sibling, cap-
turing argument order.

o Write edges (blue dashed): connect an ID node to its variable node
when the variable is written.

e Read edges (green dashed): connect an ID node to its variable node
when the variable is read.

11

o Chronological edges (yellow dashed): connect ID nodes of the same
variable to preserve usage order.

All edges are bidirectional, except sibling and chronological edges. This
graph structure enables the GNN to propagate information through the
program in a semantically meaningful way. After several message-passing
rounds through these edges, the GNN generates a numerical vector for each
variable node in both programs. Then, scalar products are computed between
all pairs of variable vectors from the incorrect and correct programs, followed
by a softmax operation to yield the final variable mapping probabilities.

3.5. Fault Localization

Effectively identifying the root causes of program failures is essential
for generating meaningful repairs [27], 42, [43]. To this end, MENTOR em-
ploys CFAULTS, a state-of-the-art MaxSAT-based fault localization technique.
CFAULTS is designed to identify minimal sets of faulty statements in C pro-
grams, even in the presence of multiple bugs. Grounded in Model-Based
Diagnosis (MBD) [40], CFAULTS encodes multiple failing test cases into a
single MaxSAT formula. Each failing test case is treated as an observation,
and all are simultaneously represented in a relaxed and unrolled version of
the input program. This unified formulation ensures that the identified faults
are consistent across all failing test cases.

The approach begins with static analysis to detect simple issues (e.g.,
uninitialized variables or division by zero). If no issues are found, the program
is unrolled and instrumented with relaxation variables that selectively deacti-
vate code statements. The resulting program is then transformed into a CNF
formula, and a MaxSAT solver is used to find the minimal set of statements
whose relaxation would make all failing test cases pass. By encoding multiple
test executions into a single MaxSAT instance, CFAULTS improves precision
in scenarios with multiple faults.

3.4. Counterexample Guided Automated Repair

Large Language Models (LLMS) excel at completing strings, while Formal
Methods (FM)-based fault localization excel at identifying buggy parts of
a program. Therefore, our approach combines the strengths of both FM
and LLMS to enhance automated program repair (APR). Firstly, we employ
MaxSAT-based fault localization techniques (see Section to rigorously
identify the minimal set of buggy parts of a program [44, 27]. Afterwards,

12

IPA Spec. Code
+ —>| Fault Localizer Generator

Buggy Program (LLMSs)
Specs + FL Candidate Program
Prompt
{Prompt Generator] [Decider] , Fixed
Program

Feedback + Counterexample

Figure 4: Counterexample Guided Automated Repair.

we leverage LLMS to quickly synthesize the missing parts in the program
sketch. Finally, we use a counterexample (i.e., a failing test case from the
test suite) to guide LLMS in generating patches that make the synthesized
program compliant with the entire test suite, thus completing the repair.
The rationale of our approach follows a Counterexample Guided Inductive
Synthesis (CEGIS) [45] loop to iteratively refine the program. Figure
provides an overview of our APR approach. The input is a buggy program
and the specifications for an introductory programming assignment (IPA),
including a test suite, a description of the IPA, and the lecturer’s reference
implementation.

We start by using MaxSAT-based fault localization techniques using all
failing test cases to identify the program’s minimal set of faulty statements
(see Section . Next, the prompt generator builds a prompt based on
the specifications of the IPA and a bug-free program sketch reflecting the
localized faults, then feeds this information to the LLM. The LLM generates
a program based on the provided prompt. After each iteration, the Decider
module evaluates the synthesised program against a test suite, i.e., it checks
whether the program passes all the tests in the test suite. If the program is
incorrect, a counterexample chosen from the test suite is sent back to the
prompt generator, which then provides this counterexample to the LLM to
prompt a revised synthesis.

Prompts. The prompts fed to LLMS can contain various types of information
related to the IPA. The typical information available in every programming
course includes the description of the IPA, the test suite to check the students’
submissions corresponding to the IPA’s specifications, and the lecturer’s

13

reference implementation.

The syntax used in our prompts is similar to that in other works on
LLM-driven program repair [16]. We have evaluated several types of prompts.
Basic prompts are the simplest prompts that can be fed to an LLM without
additional computation, including all the programming assignment’s basic

information. An example of such a prompt is the following:

Fix all semantic bugs in the buggy program below.
Modify the code as little as possible.
Do not provide any explanation.

Problem Description
Write a program that determines and prints the largest of three
integers given by the user.

#i## Test Suite

#input:

6 21

#output:

6

// The other input-output tests

Reference Implementation (Do not copy this program) <c>
T
int main(){

// Reference Implementation

Buggy Program <c>
e
int main(){

// Buggy program from Listing 1

#i## Fixed Program <c> ###

C

14

In order to incorporate information about the faults localized in the
program using MaxSAT-based fault localization, we utilized two different
types of prompts: (1) FIXME annotations and (2) program sketches. FIXME
annotated prompts are prompts where each buggy line identified by the fault
localization tool is marked with a /* FIXME */ comment. These prompts
are quite similar to the basic prompt described previously, with the primary
differences being the annotations in the buggy program and the first command
given to the LLMS, which is modified as follows:

Fix all buggy lines with '/* FIXME */' comments in the buggy
program below.

In the second type of prompt, to address program repair as a string
completion problem, we evaluated the use of prompts where the buggy
program is replaced by an incomplete program (program sketch), with each
line identified as buggy by our fault localization module replaced by a hole.
The command given to the LLMS is now to complete the incomplete program.
Consequently, the sections ‘Buggy Program’ and ‘Fixed Program’ are replaced
by ‘Incomplete Program’ and ‘Complete Program’, respectively, as follows:

Complete all the '@ HOLES N @' in the incomplete program below.
/] ...
Incomplete Program <c>
/...
Complete Program <c>
c

J

Feedback. If the candidate program generated by the LLM is not compliant
with the test suite, this feedback is provided to the LLM in a new message
through iterative querying. This new prompt indicates that the LLM’s
previous suggestion to fix the buggy program was incorrect and provides a
counterexample (i.e., an input-output test) where the suggested fixed program
produces an incorrect output. Hence, we provide the LLM with a feedback
prompt similar to the following:

Feedback
Your previous suggestion was incorrect!

15

Try again.
Code only.
Provide no explanation.

Counterexample
#input:

6 21

#output:

6

Fixed Program <c>
e

. Experimental Results

The goal of our evaluation is to answer the following research questions:

« RQ1. How effective is MENTOR using LLMS in repairing introduc-
tory programming assignments (IPAS) compared to different state-of-
the-art symbolic repair approaches?

« RQ2. How do different prompt configurations impact the performance
of LLMSs?

« RQ3. How does FM-based fault localization impact LLM-driven APR?

« RQ4. What is the performance impact of using a Counterexample
Guided approach in LLM-driven APR?

« RQ5. How helpful is it to provide a reference implementation for the
same IPA to the LLMSs?

« RQ6. How helpful is it to provide LLMSs with a variable mapping
between the buggy and a correct implementation of the same IPA?

« RQ7. How effective is MENTOR at fixing programs that CLARA fails
to repair due to control-flow issues?

« RQ8. How does LLM performance vary with different levels of program
complexity?

16

« RQ9. How many CEGIS iterations do LLMS typically require to repair
programs, and what does this indicate about their repair efficiency?

Experimental Setup. All LLMS were run using NVIDIA RTX A4000
graphics cards with 16GB of memory on an Intel(R) Xeon(R) Silver 4130
CPU @ 2.10GHz with 48 CPUs and 128GB RAM. All experiments related to
repair tasks were conducted on an Intel(R) Xeon(R) Silver computer with
4210R CPUs @ 2.40GHz, using a CPU memory limit of 10GB and a timeout
of 90s. For CLARA and VERIFIX, we set a CPU memory limit of 32GB, as
these tools do not utilize GPUs, and a timeout of 90s.

FEvaluation Benchmark. To evaluate MENTOR, we used C-PACK-
IPAs 28], which is a set of student programs developed during an introductory
programming course in the C programming language. These programs were
collected over three distinct lab classes for 25 different programming assign-
ments throughout three academic years. Each lab class focuses on a different
topic of the C programming language. The first class deals with integers
and input-output operations. Secondly, the second class focuses on loops
and chars. Lastly, in the third lab class, students learn to use vectors and
strings. Only submissions that compile without any errors were selected. The
set of submissions was split into two sets: correct submissions and incorrect
submissions. The students’ submissions that satisfied a set of input-output
test cases for each IPA were considered correct. The submissions that failed at
least one input-output test were considered incorrect. C-PACK-IPAS contains
1431 semantically incorrect programs submitted for 25 different TPAS.

4.1. Large Language Models (LLMS)

In our experiments, we used only open-access LLLMS available on Hugging
Face [46] with approximately 7 billion parameters for three primary reasons.
Firstly, closed-access models like Chat-GPT are cost-prohibitive and raise
concerns over student data privacy. Secondly, models with a very large
number of parameters (e.g., 70B) need significant computational resources,
such as GPUs with higher RAM capacities, and take longer to generate
responses, which is unsuitable for a classroom setting. Thirdly, we used
these off-the-shelf LLMS to evaluate the publicly available versions without
fine-tuning them. This approach ensures that the LLMS used in this section
are available to anyone without investing time and resources into fine-tuning
these models. Thus, we evaluated six different LLLMS for this study through

17

iterative querying. Three of these models are LLMCs, i.e., LLMS fine-
tuned for coding tasks: IBM’s GRANITE [25], Google’s CODEGEMMA [26]
and Meta’s CODELLAMA [47]. The other three models are general-purpose
LLMS not specifically tailored for coding tasks: Google’s GEMMA [48], Meta’s
LrAMA3 (latest version of the LLAMA family [49]) and Microsoft’s PH13 [50].

We selected specific variants of each model to optimize their perfor-
mance for our program repair tasks. For Meta’s LLAMA3, we utilized the
8B-parameter instruction-tuned variant. This model is designed to follow
instructions more accurately, making it suitable for a range of tasks, including
program repair. For CODELLAMA, we used the 7B-parameter instruct-tuned
version, which is specifically designed for general code synthesis and un-
derstanding, making it highly effective for coding tasks. We employed the
GRANITE model with 8B-parameters, fine-tuned to respond to coding-related
instructions. For PHI3, we opted for the mini version, which has 3.8B-
parameters and a context length of 128K. This smaller model is efficient yet
capable of handling extensive context, making it practical for educational
settings. For GEMMA, we used the 7B-parameter instruction-tuned version,
optimized to follow detailed instructions. Lastly, for CODEGEMMA, we se-
lected the 7B-parameter instruction-tuned variant, designed specifically for
code chat and instruction, enhancing its capability to handle programming-
related queries and tasks. To fit all LLMS into 16GB GPUs, we used model
quantization of 4bit. Moreover, all LLMS were run using Hugging Face’s
Pipeline architecture. By using these different LLLMS, we aimed to balance
computational efficiency with the ability to effectively generate and refine
code, facilitating a practical APR approach in an educational environment.

4.2. FEvaluation

To assess the effectiveness of the program fixes generated by the LL.MSs
under different prompt configurations, we used two key metrics: the number
of programs successfully repaired and the quality of the repairs. For assessing
the patch quality, we use the Tree Edit Distance (TED) [51],52] to compute
the distance between the student’s buggy program and the fixed program
returned by the LLMS. TED computes the structural differences between two
Abstract Syntax Trees (ASTS) by calculating the minimum number of edit
operations (i.e., insertions, deletions, and substitutions) needed to transform
one AST into another.

Based on this metric for measuring program distances, we computed the
distance score, defined by Equation |1, This score aims to identify and penalize

18

Prompt Configurations

s e e-T e-TS-
CodeGemma 451 (31.5%) 564 (39.4%) 507 (41.7%) 606 (42.3%) 113 (23.9%)
CodeLlama 447 (31 5 %) 472 (33.0%) 492 (31 49%) 500 (34.9%) 403 (28.2%)
Gemma 379 (26.5%) 462 (32.3%) 496 (34.7%) 492 (34.4%) 328 (22.9%)
Granite 529 (37.0%) 584 (40.8%) 626 (43.7%) 624 (43.6%) 459 (32.1%)
Llama3 496 (34.7%) 533 (37.2%) 564 (39.4%) 500 (41.2%) 400 (28.0%)
Phi3 367 (25.6%) 462 (32.3%) 494 (34.5%) 489 (31.2%) 313 (21.9%)
(fﬁri%ll\fs) 732 (51.2%) 821 (57.4%) 842 (58.8%) 846 (59.1%) 655 (45.8%)
LLMs FIXME_De-CE FIXME_De-TS FIXME_De-TS-CE Sk Sk_De-CE
CodeGemma 563 (39.3%) 502 (41.4%) 601 (42.0%) 181 (338%) 615 (43.0%)
CodeLlama 485 (33.9%) 481 (33.6%) 463 (32.4%) 467 (32.6%) 547 (38.2%)
Gemma 443 (31.0%) 446 (31.2%) 444 (31.0%) 3@1 (25.6%) 524 (36.6%)
Granite 574 (40.1%) 566 (39.6%) 085 (40.7%) 50 (38.4%) 653 (45.6%)
Llama3 531 (37.1%) 535 (37.4%) 57 (33.9%) 134 (30.3%) 565 (39.5%)
Phi3 448 (31.3%) 460 (32.1%) 171 (33.1%) 367 (25.6%) 506 (35.4%)
(Kﬁrﬁ%ll\fs) 806 (56.3%) 796 (55.6%) 820 (57.3%) 717 (50.1%) 890 (62.2%)
Portfolio
LLMs Sk_De-TS Sk_De-TS-CE TS (All Configurations)
CodeGemma 682 (47.7%) 688 (48.1%) 511 (35.7%) 850 (59.4%)
CodeLlama 573 (40.0%) 561 (39.2%) 466 (32.6%) 748 (52.3%)
Gemma 532 (37.2%) 534 (37.3%) 404 (28.2%) 780 (54.5%)
Granite 691 (48.3%) 681 (47.6%) 577 (40.3%) 887 (62.0%)
Llama3 578 (40.4%) 591 (41.3%) 505 (35.3%) 929 (64.9%)
Phi3 547 (38.2%) 535 (37.4%) 400 (28.0%) 759 (53.0%)
(Kﬁrﬁfﬁl\fs) 900 (62.9%) 907 (63.4%) 767 (53.6%) 1050 (73.4%)
Verifix [3| 90 (6.3%)
Clara [2| 495 (34.6%)

Table 2: The number of programs fixed by each LLM under various configurations. Row
Portfolio (All LLMSs), shows the best results across all LLMSs for each configuration.
Column Portfolio (All Configurations) shows the best results for each LLM across all
configurations. Mapping abbreviations to configuration names: CE - Counterexample, De
- IPA Description, FIXME - FIXME Annotations, SK - Sketches, TS - Test Suite.

LLMs that replace the buggy program with the reference implementation
rather than fixing it. The distance score is zero when the TED of the original
buggy program (7,) to the program suggested by the LLM (7%) is the
same as the TED of the reference implementation (7;) to 7,,. Otherwise, it
penalizes larger fixes than necessary to align the program with the correct
implementation.

TED(T}, To)>

ds(T;, T, T,) = (,1—
s(Ty,) =maz (0 TED(T,.T,)

(1)

Baseline. We used two state-of-the-art traditional semantic program repair
tools for IPAS as baselines: VERIFIX [3] and CLARA [2]. VERIFIX employs
MaxSMT to align a buggy program with a reference implementation provided

19

by the lecturer, while CLARA clusters multiple correct implementations and
selects the one that produces the smallest fix when aligned with the buggy
program. Both tools require an exact match between the control flow graphs
(e.g., branches, loops) and a bijective relationship between the variables;
otherwise, they return a structural mismatch error. VERIFIX was provided
with each buggy program, the reference implementation, and a test suite.
CLARA was given all correct programs from different academic years to
generate clusters for each IPA. Within a 90-second time limit, CLARA repairs
495 programs (34.6%), times out without producing a repair on 154 programs
(10.8%), and fails to repair 738 programs (54.7%). Furthermore, CLARA’s
clustering step was performed offline and is not included in the 90-second
time limit. In comparison, VERIFIX repairs 91 programs (6.3%), reaches the
time limit on 0.6%, and fails to repair 1338 programs (93.5%). The main
reason for these failures is that both tools rely on structure mismatch errors.

Tables [2| and [3] present the number of programs successfully repaired
by each LLM under various configurations. The row labeled Portfolio
represents the best possible outcomes by selecting the optimal configuration
for each program across all LLMS. Meanwhile, Portfolio column highlights
the best results achieved by a particular LLM across all tested configurations.
The configurations yielding the highest success rates for the six evaluated
LLMs involve incorporating a reference implementation of the IPA into
the prompt (see Table . However, rather than genuinely fixing the buggy
program, the LLMS often replace it with the reference implementation.
To address this, we separately analyzed configurations that include (see
Section and exclude access to a reference implementation.

When no reference implementation is provided (see Table , GRANITE
still leads among the LLMSs, fixing up to 62.0% of the programs across all
configurations and 48.3% when using sketches (SK), the IPA description,
and a test suite (SK_De-TS). CODEGEMMA also performs well, achieving
up to 59.4% success in a portfolio approach and showing particular strength
in configurations involving sketches (SK). For instance, CODEGEMMA can
repair 48.1% of the evaluation benchmark using bug-free sketches, TPA
description, test suite, and counterexample (SK_De-TS-CE). Configurations
incorporating sketches (SK) and FIXME annotations generally yield better
results. Including counterexamples (CE), IPA descriptions, and test suites
(De-TS) further boosts the success rate across different LLMS. The portfolio
approach, which combines the strengths of all LLMSs and configurations
without using reference implementation, achieves the highest overall success

20

memout/timeout

memout/timeout

| o m
oo é
102 sty 102 iy o0y
F e ® S
Coqlo ®° 8 o0 0
w 9 ° & oo W 8 ° e o fmo q
%) ° o o N . o, ° ®
P o 09s° @ : by tme o ¢
& g ‘ 7
1 & e | S = °
v ° 8 ° QD,? 000 & o © ﬁ Y C o o ;
$ 10t o © o igho ®°° oo & & 100 ° ° oo UL &
-Jé 0.0 ° o o de g oes °o ° O o L
© o o é © ° . " e o §
o . o oo
© o &0 dE © o8 e o ° £
° ‘p‘ ° ° L= ® o000 % o0 o® [S
o o ° > @ 42 o °o oo 2
4 9] 9]
o e & @o @ d€) e eoo e £
100 & " 100 £ - ‘
10° 10t 102 10° 10t 102
Granite+Sk_De-TS-CE-RI Granite+Sk_De-TS-CE-CPA
(a) Reference Implementation. (b) Closest Program using AASTS.

Figure 5: Comparison of tree edit distances (TED) for GRANITE’S repairs when using
(x-axis) versus not using (y-axis) correct implementations with configuration Sk_De-TS-CE.

rate, fixing 73.4% of the programs. This demonstrates that leveraging multiple
LLMSs together can significantly enhance repair success.
We are now prepared to answer the first four research questions:

A1l. All six LLMs used by MENTOR, across different prompt config-
urations, repair more programs than traditional tools such as CLARA
and VERIFIX.

A2. Prompt configurations with FL-based Sketches, IPA description
and test suite yield the most successful repair outcomes.

A3. Incorporating FL-based Sketches (or FIXME annotations) allows
LLMS to repair more programs than only providing the buggy program.

A4. Employing a Counterexample guided approach significantly im-
proves the accuracy of LLM-driven APR across various configurations.

21

S

Prompt configurations with access to Reference Implcmentations

e-

e- -

CodeGemma 505 (35.3%) 578 (10.4%) 576 (10.3%) @7 (44 %)
CodeLlama 532 (37.2%) 528 (36.9%) 25 (367 5 (39.5%)
Gemma 633 (44.2%) 595 (41.6%) 607 (33 (30.3%)
Granite 758 (53.0%) 773 (54.0%) 828 () (3)
Llama3 595 (41.6%) 685 (47.9%) 601 (4 o) 57 (45.9%)
Phi3 465 (32.5%) 552 (38.6%) 444 (31.0%) 555 (38.1%)
(fﬁrﬁi’i‘/f; 1021 (71.3%) 1033 (72.2%) 1046 (73.1%) 11 (70.6%)
LLMs __ FIXME_De-TS-CE-RI FIXME_De-TS-CPA FIXME_Do-TS-RI RI Sk_De-TS-CE-CPA
CodeGemma 38 (1107 [T% 5 (311%) 725 (50.7%)
CodeLlama)9 (42.6%) (42.7%) 155 (31.8%) 633 (44.2%)
Gemma om (43.0%) 55 (45.8%) 82 (10.7) 664 (46.4%)
Granite 57 (59.9%) 882 (61.6%) 775 (54.2% 838 (58.6%)
Llama3 sl (47.6%) 661 (46.27) 555 (38.8%) 725 (50.7%)
Phi3 192 (31.4%) 08 (35.5%) 358 (25.0%) 639 (44 %)
(fﬁrifl“’ll\fs) 1056 (73.8%) 1036 (72.4%) 1082 (75.6%) 1039 (72.6%) 1050 (73.4%)
LLMs Sk_De-TS-CE-RI Sk_De-TS-CPA Sk_De-TS-RI (zy Cﬁiﬁéﬂ:gﬁons)
CodeGemma 739 (SL.6%) 74 (52.0%) 729 (50.0%) 950 (06.4%)
CodeLlama 675 (47.2%) 673 (47.0%) 677 (47.3%) 959 (67.0%)
Gemma 732 (51.2%) 681 (47.6% 20 (50.3%) 1025 (71.6%)
Granite 876 (61.2%) 881 (61.6%) 921 (64.4%) 1169 (81.7%)
Llama3 730 (5L.0%) 783 (54. 7%) 706 (49.3%) 1073 (75.0%)
Phi3 647 (45.2%) 661 (46.2%) 653 (45.6%) 959 (67.0%)
(fﬁrifl“’ll\‘/fs) 1077 (75.3%) 1080 (75.5%) 1089 (76.1%) 1218 (85.1%)

Table 3: The number of programs fixed by each LLM under various configurations with
access to a reference implementation of each IPA. Row Portfolio (All LLMs), shows the
best results across all LLMs for each configuration. Column Portfolio (All Configurations)
shows the best results for each LLM across all configurations. Mapping abbreviations
to configuration names: CE - Counterexample, CPA - Closest Program using AASTS,
CPIA - Closest Program using Invariants + AASTS, De - IPA Description, FIXME
- FIXMFE Annotations, RI - Reference Implementation, SK - Sketches, TS - Test Suite.
Entries highlighted in bold correspond to the highest success rates for each LLM.

Metric: sum(Distance Score)
Prompt Conﬁguratlons

s __De-T, __De-TS- e-TS- __De-TS- __De-TS-
CodeGemma 169.6 479.3 ~ 2192 1263 250.6
CodeLlama 413.5 403.9 240.4 409.2 258.3
Gemma 284.3 282.2 142.2 264.0 144.1
Granite 463.1 470.6 171.2 298.8 160.4
Llama3 353.4 353.6 175.9 392.7 176.0
Phi3 276.0 291.9 96.8 223.8 96.8
LLMs FIXME_ De-TS-RI RI Sk Sk_ De-CE Sk_De-TS
CodeGemma 4357 3735 12138 4738 5244
CodeLlama | 332.3 421.6 464.8 477.9
Gemma 227.2 280.1 328.6 338.8
Granite 93.8 479.4 506.2 539.8
Llama3 409.8 354.6 383.1 379.8
Phi3 203.2 265.1 299.5 326.5
LLMs Sk_De-TS-CE Sk_ De-TS-CE-CPA Sk__De-TS-CE-RI Sk__De-TS-CPA Sk__De-TS-RI
CodeGemma 529.5 249.8 4973 268.8 1813
CodeLlama 464.5 251.3 459.0 270.8 452.1
Gemma 340.3 156.4 316.2 153.9 307.2
Granite 533.6 172.3 334.5 175.4 349.4
Llama3 384.5 172.7 423.0 196.4 407.3
Phi3 321.4 98.2 253.4 97.2 256.6

Table 4: The cumulative distance scores for each program repaired by each LLM across
various configurations. Entries highlighted in bold correspond to the highest score for each

LLM.

22

4.2.1. Correct Implementations

Furthermore, in Table |3, we provide the results of LLMS with a reference
implementation. The correct implementation can either be the lecturer’s
reference implementation (RI) for the same IPA or the most similar cor-
rect program from a previously submitted student. The closest correct
program is determined using Tree Edit Distance (TED) values, computed
over the AASTS (CPA) of the programs, or over the AASTS and their invari-
ants (CPIA). The intent was to allow the model to reuse correct code snippets
to generate repairs. Results show that including a reference implementation
allows for better repair results. However, as mentioned earlier, the LLMS
often simply copy the provided reference implementation.

Table 4| presents the sum of the distance scores (see Equation [1)) for the top-
performing LLMS from Tables 2| and [3] across different configurations. This
summation aims to penalize LLMS that either copy the provided reference
implementation or generate unnecessarily large repairs. For example, GRANI-
TE using configuration Sk De-TS-CE-RI can repair 876 programs but yields
a total distance score of 334.5, whereas using the same configuration without
a correct implementation repairs 681 programs resulting in a higher distance
score of 533.6.

Figure [5aj shows a scatter plot that compares the tree edit distance (TED)
of the buggy program to the program fixed by GRANITE with and without
a reference implementation, using configuration Sk De-TS-CE. Each point
represents a faulty program, where the x-value (resp. y-value) represents
the TED cost of GRANITE’ with access to a reference implementation (resp.
without it). Points below the diagonal indicate that fixing a program with
access to a correct implementation incurs a higher TED cost than fixing it
without access. This suggests that while access to a reference implementation
enables GRANITE and other LLLMS to repair more programs, it often results in
larger changes to the student’s program than when no correct implementation
is given. Similarly, Figure [5b|shows a scatter plot that compares the TED
cost between the buggy program and the program fixed by GRANITE using
the closest correct implementation determined by anonymized abstract syntax
trees (see Section[3.1), AASTs (CPA), and without using this implementation.
This plot shows that while having a correct implementation helps GRA-
NITE repair more programs, it generally results in fewer modifications to
the student’s code when the CPA is used instead of the lecturer’s solution.
Moreover, we did not run the same prompt configuration using the closest

23

correct program considering both AASTS and invariants (CPIA) because, as
shown in Table [3] this approach did not contribute positively to the repair
process of the LLMSs.

To answer our fifth research question (RQ5):

A5. Including a reference implementation allows for more repaired
programs but with potentially less efficient fixes

4.2.2. Variable Mappings

As explained in Section [3.2] mapping variables between two programs is
essential for various applications, such as program repair [15] 39, [53]. In this
context, we have evaluated the impact of incorporating variable mappings
between the buggy program and a given correct implementation into the
prompts used by LLMS. These variable mappings are computed using Graph
Neural Networks (GNNS) [15], which map the set of variables between each
correct program and the incorrect submission based on both programs’ ASTS.

GNNs. The specific GNN architecture used in this work is the relational
graph convolutional neural network (RGCN), which can handle multiple edges
or relation types within one graph [54]. The numerical representation of nodes
in the graph is updated in the message passing step according to the following
equation:

Xi: root * Xz‘f'z Z G‘) © X,

re€R FEN(3)

where © are the trainable parameters, R stands for the different edge types
that occur in the graph, and N, the neighbouring nodes of the current node i
that are connected with the edge type r [55]. After each step, we apply Layer
Normalization [56] followed by a Rectified Linear Unit (ReLU) non-linear
function. These GNNs [15] were trained on the first lab class of C-PACK—
IPAs [28], with MULTIPAS [57] augmenting C-PACK-IPAS by generating
pairs of buggy/correct programs. At training time, since the incorrect program
is generated, the mapping between the variables of both programs is known.
The network is trained by minimizing the cross entropy loss between the labels
(which are categorical integer values indicating the correct mapping) and the
values in each corresponding row of the matrix P. As an optimizer, we used

24

Prompt configurations with access to Reference Implementations and Variable Mappings

LIMs TA-VM __ De-TS-CE-CP. De-TS-CE-RI-VM __ FIXME_ De-TS-CE-CPA-VM
CodeGemma 507 (AL77% 570 (A0.5%) 651 (15.5%) 621 (13.6%) 700 (1S.9%)
CodeLlama 660 (46.1%) 699 (48.8%) 589 (41.2%) 568 (39.7%) 614 (42.9%)

Gemma 38 (51.6%) 700 (48.9%) 675 (47.2%) 680 (47.5%) 656 (45.8%)

Granite 27 (57.8%) 721 (50.4%) 821 (57.4%) 869 (60.7%) 846 (59.1%)

Llama3 (41.3%) 565 (39.5%) 729 (50.9%) 711 (40 %) rm (48.1%)

Phi3 (38.6%) 516 (36.1%) 508 (41.8%) !)1 (42.0%)
(fﬁrﬁfﬁl\‘d”s) 1036 (72.4%) 991 (69.3%) 1042 (72.8%) 1070 (74.8%) 1033 (72.2%)

LLMs FIXME_De-TS-CE-RI-VM RI-VM Sk_De-TS-CE-CPA-VM Sk_ De-TS-CE-RI-VM Portfolio

5 — — — (All Configurations)
CodeGemma 705 (19.3%) 526 (36.8%) 782 (54.6%) 70 (515%) 950 (67.0%)
CodeLlama 618 (43.2%) 543 (37.9%) 681 (47.6%) 677 (47.3%) 984 (68.8%)

Gemma 650 (45.4%) 639 (44.7%) 756 (52.8%) 766 (53.5%) 1082 (75.6%)

Granite 882 (61.6%) 832 (58.1%) 901 (63.0%) 921 (64.4%) 1167 (S1.6%)

Llama3 669 (46.8%) ‘)9 (39.1%) 792 (55.3%) 720 (50.3%) 1060 (74.1%)

Phi3 531 (37.1%) 9 (36.3%) 691 (48.3%) 691 (48.3%) 088 (69.0%)
(:ﬁri%ll\}["s) 1075 (75.1%) 1082 (75.6%) 1078 (75.3%) 1093 (76.4%) 1210 (84.6%)

Table 5: The number of programs fixed by each LLM under various configurations with
access to variable mappings. Row Portfolio (All LLMSs), shows the best results across all
LLMs for each configuration. Column Portfolio (All Configurations) shows the best results
for each LLM across all configurations. Mapping abbreviations to configuration names:
CE - Counterezample, CPA - Closest Program using AASTS, CPIA - Closest Program
using Invariants + AASTS, De - IPA Description, FIXME - FIXMFE Annotations,
RI - Reference Implementation, SK - Sketches, TS - Test Suite, VM - Variable Mapping.

Metric: sum(Distance Score)
Prompt Configurations
P.

LLMs = ™M]
CodeGemma 268.6 3822 257.6 170.5 2755
CodeLlama 2173 351.6 253.9 426.8 231.0
Gemma 137.2 185.3 156.5 243.4 166.1
Granite 78.1 109.4 148.1 283.5 141.8
Llama3 249.9 316.3 199.2 426.0 189.1
Phi3 134.2 182.1 76.4 214.2 75.3
LLMs FIXME_ De-TS-CE-RI-VM RI-VM Sk De-TS-CE-CPA-VM Sk_ De-TS-CE-RI-VM
CodeGemma 4753 410.1 286.9 509.5
CodeLlama 424.4 372.7 250.0 455.2
Gemma 263.3 195.7 1715 306.4
Granite 281.3 114.8 165.7 330.9
Llama3 407.0 4298 196.1 432.1
Phi3 213.0 252.4 82 2475

Table 6: The cumulative distance scores for each program successfully repaired by each
LLM across various configurations considering variable mappings. Entries highlighted in
bold correspond to the highest score for each LLM.

the Adam algorithm with its default settings in PyTorch [5§]. The batch
size was 1. As there are many different programs generated by the mutation
procedures, we took one sample from each mutation for each student. Each
network was trained for 20 full passes (epochs) over this dataset while shuffling
the order of the training data before each pass. For validation purposes, data
corresponding to 20% of the students from the first year of the dataset was
kept separate and not trained on. Please refer to [15] for more details about
the training and evaluation of the GNNS used in MENTOR.

Table [5 shows the results for LLMS when provided with a correct im-
plementation for the same IPA and a variable mapping between the buggy

25

CodeGemma CodeLlama Gem: Llam Phi3
LLMs +Sk_De-TS-CE +Sk_De-TS +Sk_ . De-TS CE +Sk De-TS +Sk_ De-TS CE +Sk_De-TS
#Programs Fixed 270 (34.5%) 210 (26.8%) 210 (26.8%) 290 (37.0%) 199 (25.4%) 199 (25.4%)

Table 7: The number of programs repaired by each LLM using their best-performing
prompt configuration, specifically on the subset of programs where CLARA fails to repair
due to control-flow issues (54.7% of C-PACK-IPAS).

Quartiles for Average CodeGemma CodeLlama Gemma te Llam Phi3 Cl

Cyclomatic Complexity +Sk_ De-TS-CE +Sk_De-TS +Sk_De-TS-CE +Sk De-TS +Sk_ De-TS CE +Sk_De-TS ara
QL: 1.0-2.5 231 (76.5%) 178 (58.9%) 183 (60.6%) 20T (06.6%) 217 (71.9%) 198 (05.6%) 164 (54.3%)
Q2: 2.5-3.5 231 (65.3%) 212 (59.9%) 169 (4/.7%) 231 (65.3%) 1)2 (54.2%) 180 (50.9%) 163 (46.1%)
Q3: 3.5-7.0 168 (45.3%) 140 (37.7%) 129 (34.8%) 190 (51.2%) 39 (37.5%) 125 (33.7%) 124 (33.4%)
Q4: 7.0-26 58 (14.4%) 43 (10.6%) 53 (13.1%) 69 (17.1%) 43 (10.6%) 44 (10.9%) 44 (10.9%)

Table 8: The number of programs repaired by each LLM using their best-performing
prompt configuration, considering the average cyclomatic complexity of programs [59].

and correct implementation. The correct implementation can either be the
lecturer’s reference implementation (RI) for the same IPA or the most similar
correct program from a previously submitted student. The closest correct
program is determined using Tree Edit Distance (TED) values, computed
over the AASTs (CPA) of the programs, or over the AASTS and their
invariants (CPIA). As indicated in Table 5] all LLMS, except for GRANITE,
are able to repair more programs when they have access to variable mappings
between the buggy and correct programs. For instance, CODEGEMMA, using
the prompt configuration Sk De-TS-CE-CPA without variable mappings,
fixes 725 programs, while the same configuration plus variable mappings fixes
782 programs, representing an improvement of nearly 8%.

Table |§| presents the sum of the distance scores (see Equation (1)) for the
LLMsS from Table [5] across different prompt configurations. Notably, only
LLAMA3’s score improves compared to Table [4] increasing from a distance
score of 423 to 432.1 in Table [6] This suggests that while access to variable
mappings aids LLLMS in repairing more programs, it does not significantly
enhance the LLMSs’ distance score in 80% of the evaluated models.

To answer our sixth research question (RQG6):

AG6. Incorporating a variable mapping alongside the reference imple-
mentation enables even more programs to be repaired, though it may
similarly lead to less efficient fixes.

26

4.83. Discussion

In response to RQ7, we evaluated the effectiveness of LLMS in repair-
ing programs that CLARA fails to handle due to control-flow issues, which
account for 54.7% of C-PACK-IPAS (738 programs). Table [7| presents these
results. Among the best-performing configurations, GRANITE with Sk De-TS
achieved the highest repair rate, successfully fixing 290 programs (37.0%) in
this subset. This highlights GRANITE’s strong capability to handle complex
program structures where traditional constraint-based tools fail. CODEGEM-
MA with Sk De-TS-CE also performed well, repairing 270 programs (34.5%),
demonstrating the advantage of incorporating counterexamples (CE) along-
side the Sketches (Sk) configuration. In contrast, models such as LLAMA3 and
PHI3 achieved lower success rates, each repairing only 199 programs (25.4%),
suggesting limitations in their ability to generalize and address intricate
control-flow issues.

AT7. We evaluated 738 programs that CLARA fails to repair due to
control-flow issues, representing 54.7% of C-PAck-IPAs. MENTOR
repaired 37.0% of these programs using GRANITE with Sk_De-TS,
followed by CODEGEMMA with Sk De-TS-CE at 34.5%, while LLA-
MA3 and PHI3 performed worse, each repairing only 25.4%.

Furthermore, to answer RQS8, and to gain deeper insights into MEN-
TOR’s performance across varying levels of program complexity, we evaluated
the average cyclomatic complexity of each program in C-PACK-IPAS using
lizard [59]. Table |8 summarizes these findings, divided into quartiles based
on cyclomatic complexity. For simpler programs (Q1: 1.0-2.5), CODEGEMMA
+Sk De-TS-CE excelled, achieving a 76.5% repair rate. However, as program
complexity increased (Q3: 3.5-7.0), GRANITE +Sk_ De-TS outperformed the
other models with a 51.2% repair rate, underscoring its robustness in tackling
moderately complex programs. In the most challenging cases (Q4: 7.0-26),
GRANITE retained its lead, repairing 17.1% of programs. These results
suggest that while CODEGEMMA is highly effective for simpler errors, GRA-
NITE exhibits superior adaptability and resilience when addressing programs
of greater complexity.

27

A8. All evaluated models, including CLARA, face significant challenges
when repairing programs with an average cyclomatic complexity above
seven. Nevertheless, our LLM-based approach successfully repairs more
complex programs than CLARA.

Finally, considering only CEGIS loops where LLMSs were able to repair
the program within the time limit, the minimum number of iterations is one,
the maximum number of iterations to fix a program is seven, and the average
number of iterations is 1.14. In 89% of the cases, the program is repaired on
the first attempt. Thus, to answer our final research question (RQ9):

A9. LLMS typically require very few CEGIS iterations to repair pro-
grams. On average, only 1.14 iterations are needed, with 89% of
repairs completed on the first attempt and no case requiring more
than seven iterations.

5. Related Work

Automated Program Repair (APR). Several constraint-based program
repair techniques have been proposed to check if a program is semantically
correct: clustering-based [2], implementation-driven [4 3 5] [60], semantic
code search [61) 62 63, [64], generate-and-validate [65, 66], and semantic-
based techniques [67, 68, [69]. Clustering-based repair frameworks [2), [70] [4)
8] address incorrect student submissions by leveraging a test suite and a
pool of N correct submissions for the same ITPA. To improve scalability,
they first eliminate dynamically equivalent solutions using the provided test
suite and clustering techniques, ensuring that only semantically distinct
programs are retained. The remaining correct solutions are then grouped
into K semantically different clusters (K << N), each represented by a
cluster exemplar. These representatives serve as the basis for repairing
the incorrect submission, reducing redundancy while maintaining coverage
of diverse solution strategies. Implementation-driven repair tools use one
reference implementation to repair a given incorrect submission [3, [, [60].
AUTOGRADER [60] finds potential path differences between the executions of a
student’s submission and a reference implementation using symbolic execution.
VERIFIX [3] aligns an incorrect program with the reference solution into an
automaton. Then, using that alignment relation and MaxSMT solving,

28

VERIFIX proposes fixes to the incorrect program. Moreover, constraints-
based repair tools are developed for specific programming languages and
typically support only a subset of that language, based on the focus of the
programming course. Extending the supported subset is often hard and time-
consuming. Furthermore, code search methods [61], 62, [63] 64] form another
family of semantic program repair techniques. These approaches rely on a
specification (e.g., input—output tests) to query large code repositories and
identify fragments that satisfy the specification. Unlike clustering-based or
implementation-driven approaches, semantic code search does not rely on the
closest correct implementation of the same IPA or on a lecturer-provided
reference solution. Instead, it searches across other correct programs to
extract code fragments that can be used to repair the incorrect submission.
Generate-and-validate techniques [65] [66] apply predefined mutation operators
to the input program to produce multiple candidate solutions, which are
then validated against the test suite for correctness. Finally, semantic-based
approaches rely on symbolic techniques that encode programs into logical
formulae for repair. SEMFIX [67] leverages fault localization to identify
suspicious statements and replaces them with symbolic expressions, which
are then evaluated against the test suite. DIRECTFIX [68] extends this idea
by encoding the program as a MaxSMT formula, enabling the synthesis of
multi-line repairs. While more powerful than SEMF1X, this approach suffers
from scalability issues due to the complexity of solving large formulas. To
balance scalability and expressiveness, ANGELIX [69] introduces the concept
of angelic values, states, paths, and forests, which capture the intended
program behavior in symbolic form. An angelic value is the expected value
an expression should return to pass a given test. An angelic state is the set
of variables that are visible in the scope of the expression being analyzed. An
angelic path is encoded as a triple containing the faulty expression and its
respective angelic value and state, these paths can be achieved by symbolic
execution of programs. Finally, an angelic forest is the set of angelic paths
that encode a repair problem. ANGELIX uses these forests to synthesize
multi-line fixes.

Large Language Models (LLMs). LLMS trained on code (LLMCSs) have
demonstrated significant effectiveness in generating program fixes [106, [17,
18], 19} 20, 21, [71l, [72] [73]. For instance, RING [16] is a multilingual repair
engine powered by an LLMC that uses fault localization information from
error messages and leverages the few-shot capabilities of LLMCS for code
transformation. In the context of APR for programming education, several

29

works have explored the use of LLMS for coding tasks [22] 23] [74]. PyDex [22],
for example, employs iterative querying with CoDpEX, an LLMC version of
ChatGPT, using test-based few-shot selection and structure-based program
chunking to repair syntax and semantic errors in Python assignments. Simi-
larly, CODEHELP [74] utilizes OpenAl’'s LLMS to provide textual feedback
to students on their programming assignments. However, to the best of
our knowledge, no existing work has explored the use of LLMS guided by
formula-based fault localization.

Fault localization (FL). Fault localization techniques typically fall into
two main families: spectrum-based (SBFL) and formula-based (FBFL). SBFL
methods [75], [76], [77, [78] [79], 80] estimate the likelihood of a statement being
faulty based on test coverage information from both passing and failing test
executions. While SBFL techniques are generally fast, they may lack precision,
as not all identified statements are likely to be the cause of failures [811 [82]. In
contrast, FBFL approaches [83] 42, [43] [84], 85], [86, [87, 88, 89] are considered
exact. FBFL methods encode the fault localization problem into several
optimization problems aimed at identifying the minimum number of faulty
statements within a program. Typically, these methods perform a MaxSAT
call for each failing test, allowing them to individually identify a minimal set
of faults for each failing test case rather than simultaneously addressing all
failing test cases.

6. Conclusion

In conclusion, MENTOR presents an innovative solution for automated
program repair (APR) in the context of introductory programming assign-
ments (IPAs). By addressing the challenges faced by state-of-the-art tools like
CLARA and VERIFIX, MENTOR introduces a novel approach that combines
advanced techniques for greater flexibility in repairing student submissions.
Unlike CLARA, which requires strict structural alignment between faulty
and correct programs, MENTOR’s LLM-based approach enables flexible
repairs without strict structural alignment. Furthermore, MENTOR em-
ploys a clustering-based strategy that takes advantage of previously correct
submissions to repair programs with different control flow graphs. In addition,
MENTOR uses Graph Neural Networks (GNNs) to map variables between
programs more effectively in its variable alignment module, and its fault
localization module, CFAULTS is based on Maximum Satisfiability (MaxSAT)
techniques, which allows it to pinpoint buggy code with precision.

30

One of MENTOR’s key innovations is the combination this MaxSAT-
based fault localization with a program fixer module that integrates Formal
Methods (FM) and Large Language Models (LLMs), MENTOR iteratively
refines student programs, leading to smaller, more precise fixes. This hybrid
approach leverages the strengths of both FM, which excels at fault localiza-
tion, and LLMs, which are adept at generating code patches, exceeding the
capabilities of symbolic repair tools alone.

Experimental results on C-PACK-IPAS demonstrate MENTOR’s supe-
rior performance, with repair success rates ranging from 37.3% to 64.4%,
depending on the prompt configuration and LLM used. This marks a signifi-
cant improvement over the state-of-the-art.

To conclude, MENTOR aims to support both students and lecturers
by offering automated personalized feedback in IPAs. For lecturers, MEN-
TOR simplifies the evaluation process and allows programming courses to
scale to larger enrollments, as the need for direct personalized feedback from
the lecturer is significantly reduced. For students, MENTOR can improve
their self-learning experience by providing targeted feedback on syntactic and
semantic errors in a shorter time frame.

Currently, MENTOR provides personalized feedback to programmers by
offering the repaired program generated by the program fixer or by highlighting
bugs in their code. For future work, we propose using the repaired program
to provide more detailed feedback, rather than just highlighting errors. This
could include providing a sketch of the repaired program as a hint to guide
students through fixing their buggy code. Furthermore, future work includes
extending MENTOR to programming languages other than C. Moreover,
we plan to conduct a user study of MENTOR to gather qualitative insights
on its practical utility in educational settings.

Acknowledgments

PO acknowledges partial support from the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115). This work was also supported by Portuguese na-
tional funds through FCT, under projects UID/50021/2025, UID/PRR /50021 /-
2025, and 2023.14280.PEX (DOI: 10.54499/2023.14280.PEX) and grant
SFRH/BD/07724/2020 (DOI: 10.54499/2020.07724.BD). This work was also
supported by the MEYS within the program ERC CZ under the project

31

POSTMAN no. LL1902 and co-funded by the EU under the project ROBO-
PROX (reg. no. CZ.02.01.01/00/22_008,/0004590).

References

1]

P. Orvalho, M. Janota, V. Manquinho, MENTOR: Fixing Introduc-
tory Programming Assignments With Formula-Based Fault Localization
and LLM-Driven Program Repair, 2025. URL: https://zenodo.org/
records/15678692. doi:10.5281/zenodo.15678691.

S. Gulwani, I. Radicek, F. Zuleger, Automated clustering and program
repair for introductory programming assignments, in: PLDI 2018, ACM,
2018, pp. 465-480.

U. Z. Ahmed, Z. Fan, J. Yi, O. I. Al-Bataineh, A. Roychoudhury, Verifix:
Verified repair of programming assignments, ACM Trans. Softw. Eng.
Methodol. (2022). URL: https://doi.org/10.1145/3510418. doi:10.
1145/3510418.

K. Wang, R. Singh, Z. Su, Search, align, and repair: data-driven feedback
generation for introductory programming exercises, in: PLDI 2018, ACM,
2018, pp. 481-495.

Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, A. Roychoudhury, Re-
factoring based program repair applied to programming assignments,
in: 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
IEEE, 2019, pp. 388-398.

P. Orvalho, M. Janota, V. Manquinho, GitSEED: A Git-backed Auto-
mated Assessment Tool for Software Engineering and Programming Edu-
cation, in: Proceedings of the 2024 ACM Virtual Global Computing Edu-
cation Conference, SIGCSE Virtual 2024, volume 1, 2024. URL: https://
doi.org/10.1145/3649165.3690106. doi:10.1145/3649165.3690106.

M. R. Contractor, C. R. Rivero, Improving program matching to au-
tomatically repair introductory programs, in: S. Crossley, E. Popescu
(Eds.), Intelligent Tutoring Systems, Springer International Publishing,
Cham, 2022, pp. 323-335.

32

https://zenodo.org/records/15678692
https://zenodo.org/records/15678692
http://dx.doi.org/10.5281/zenodo.15678691
https://doi.org/10.1145/3510418
http://dx.doi.org/10.1145/3510418
http://dx.doi.org/10.1145/3510418
https://doi.org/10.1145/3649165.3690106
https://doi.org/10.1145/3649165.3690106
http://dx.doi.org/10.1145/3649165.3690106

8]

[10]

[11]

[14]

[15]

[16]

P. Orvalho, M. Janota, V. Manquinho, InvAASTCluster: On Applying
Invariant-Based Program Clustering to Introductory Programming As-
signments, J. Syst. Softw. 230 (2025) 112481. do0i:10.1016/J.JSS.2025.
112481,

R. Gupta, S. Pal, A. Kanade, S. K. Shevade, Deepfix: Fixing common C
language errors by deep learning, in: S. P. Singh, S. Markovitch (Eds.),
AAAT 2017, AAAIT Press, 2017, pp. 1345-1351.

A. Mesbah, A. Rice, E. Johnston, N. Glorioso, E. Aftandilian, Deepdelta:
learning to repair compilation errors, in: ESEC/SIGSOFT FSE 2019,
ACM, 2019, pp. 925-936.

R. Gupta, A. Kanade, S. K. Shevade, Deep reinforcement learning for
syntactic error repair in student programs, in: The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAT 2019, AAAI Press, 2019, pp.
930-937.

M. Yasunaga, P. Liang, Graph-based, self-supervised program repair
from diagnostic feedback, in: ICML 2020, volume 119 of Proceedings of
Machine Learning Research, PMLR, 2020, pp. 10799-10808.

R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, B. Hartmann, Learning syntactic program transformations
from examples, in: S. Uchitel, A. Orso, M. P. Robillard (Eds.), ICSE
2017, IEEE / ACM, 2017, pp. 404-415.

S. Bhatia, P. Kohli, R. Singh, Neuro-symbolic program corrector for
introductory programming assignments, in: ICSE 2018, ACM, 2018, pp.
60-70.

P. Orvalho, J. Piepenbrock, M. Janota, V. M. Manquinho, Graph Neural
Networks for Mapping Variables Between Programs, in: ECAI 2023 - 26th
European Conference on Artificial Intelligence, volume 372 of Frontiers
in Artificial Intelligence and Applications, 10S Press, Poland, 2023,
pp- 1811-1818. URL: https://doi.org/10.3233/FAIA230468. doi:10.
3233/FATA230468.

H. Joshi, J. P. C. Sanchez, S. Gulwani, V. Le, G. Verbruggen, I. Radicek,
Repair is nearly generation: Multilingual program repair with llms, in:

33

http://dx.doi.org/10.1016/J.JSS.2025.112481
http://dx.doi.org/10.1016/J.JSS.2025.112481
https://doi.org/10.3233/FAIA230468
http://dx.doi.org/10.3233/FAIA230468
http://dx.doi.org/10.3233/FAIA230468

[17]

[18]

[19]

[20]

[21]

B. Williams, Y. Chen, J. Neville (Eds.), Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence, TAAT 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023, AAAI Press, 2023,
pp. 5131-5140. URL: https://doi.org/10.1609/aaai.v37i4.25642.
doii10.1609/AAAT.V37I4.25642.

C. S. Xia, Y. Ding, L. Zhang, The plastic surgery hypothesis in the era of
large language models, in: 38th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2023, Luxembourg, September 11-
15, 2023, IEEE, 2023, pp. 522-534. URL: https://doi.org/10.1109/
ASES6229.2023.00047. doi:10.1109/ASE56229.2023.00047.

M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, A. Svy-
atkovskiy, Inferfix: End-to-end program repair with llms, in: S. Chan-
dra, K. Blincoe, P. Tonella (Eds.), Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2023, San Francisco, CA,
USA, December 3-9, 2023, ACM, 2023, pp. 1646-1656. URL: https://
doi.org/10.1145/3611643.3613892. doi:10.1145/3611643.3613892.

Y. Wei, C. S. Xia, L. Zhang, Copiloting the copilots: Fusing large
language models with completion engines for automated program re-
pair, in: S. Chandra, K. Blincoe, P. Tonella (Eds.), Proceedings
of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, ACM,
2023, pp. 172-184. URL: https://doi.org/10.1145/3611643.3616271!
d0ii10.1145/3611643.3616271.

7. Fan, X. Gao, M. Mirchev, A. Roychoudhury, S. H. Tan, Automated
repair of programs from large language models, in: 45th IEEE/ACM In-
ternational Conference on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023, IEEE, 2023, pp. 1469-1481. URL: https:
//doi.org/10.1109/ICSE48619.2023.00128. doi:10.1109/ICSE48619.
2023.00128.

C.S. Xia, Y. Wei, L. Zhang, Automated program repair in the era of large
pre-trained language models, in: 45th IEEE/ACM International Confer-

34

https://doi.org/10.1609/aaai.v37i4.25642
http://dx.doi.org/10.1609/AAAI.V37I4.25642
https://doi.org/10.1109/ASE56229.2023.00047
https://doi.org/10.1109/ASE56229.2023.00047
http://dx.doi.org/10.1109/ASE56229.2023.00047
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
http://dx.doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3616271
http://dx.doi.org/10.1145/3611643.3616271
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
http://dx.doi.org/10.1109/ICSE48619.2023.00128
http://dx.doi.org/10.1109/ICSE48619.2023.00128

[22]

[23]

[24]

ence on Software Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023, IEEE, 2023, pp. 1482-1494. URL: https://doi.org/10.
1109/ICSE48619.2023.00129. do0ii10.1109/ICSE48619.2023.00129.

J. Zhang, J. P. Cambronero, S. Gulwani, V. Le, R. Piskac, G. Soares,
G. Verbruggen, Pydex: Repairing bugs in introductory python assign-
ments using llms, Proc. ACM Program. Lang. 8 (2024) 1100-1124. URL:
https://doi.org/10.1145/3649850. doi:10.1145/3649850.

T. Phung, J. Cambronero, S. Gulwani, T. Kohn, R. Majumdar, A. Singla,
G. Soares, Generating high-precision feedback for programming syntax
errors using large language models, in: M. Feng, T. Késer, P. P. Talukdar,
R. Agrawal, Y. Narahari, M. Pechenizkiy (Eds.), Proceedings of the
16th International Conference on Educational Data Mining, EDM 2023,
Bengaluru, India, July 11-14, 2023, International Educational Data
Mining Society, 2023. URL: https://educationaldatamining.org/
2023 .EDM-short-papers.37/index.html.

C. S. Xia, L. Zhang, Less training, more repairing please: revisiting
automated program repair via zero-shot learning, in: A. Roychoudhury,
C. Cadar, M. Kim (Eds.), Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November
14-18, 2022, ACM, 2022, pp. 959-971. URL: https://doi.org/10.1145/
3540250.3549101. doii10.1145/3540250.3549101.

M. Mishra, M. Stallone, G. Zhang, Y. Shen, A. Prasad, A. M. Soria,
M. Merler, P. Selvam, S. Surendran, S. Singh, M. Sethi, X. Dang, P. Li,
K. Wu, S. Zawad, A. Coleman, M. White, M. Lewis, R. Pavuluri, Y. Koyf-
man, B. Lublinsky, M. de Bayser, 1. Abdelaziz, K. Basu, M. Agarwal,
Y. Zhou, C. Johnson, A. Goyal, H. Patel, S. Y. Shah, P. Zerfos, H. Lud-
wig, A. Munawar, M. Crouse, P. Kapanipathi, S. Salaria, B. Calio,
S. Wen, S. Seelam, B. Belgodere, C. A. Fonseca, A. Singhee, N. Desai,
D. D. Cox, R. Puri, R. Panda, Granite code models: A family of open
foundation models for code intelligence, CoRR abs/2405.04324 (2024).
URL: https://doi.org/10.48550/arXiv.2405.04324. doi:10.48550/
ARXTV.2405.04324. arXiv:2405.04324.

H. Zhao, J. Hui, J. Howland, N. Nguyen, S. Zuo, A. Hu, C. A. Choquette-
Choo, J. Shen, J. Kelley, K. Bansal, L. Vilnis, M. Wirth, P. Michel,

35

https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
http://dx.doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1145/3649850
http://dx.doi.org/10.1145/3649850
https://educationaldatamining.org/2023.EDM-short-papers.37/index.html
https://educationaldatamining.org/2023.EDM-short-papers.37/index.html
https://doi.org/10.1145/3540250.3549101
https://doi.org/10.1145/3540250.3549101
http://dx.doi.org/10.1145/3540250.3549101
https://doi.org/10.48550/arXiv.2405.04324
http://dx.doi.org/10.48550/ARXIV.2405.04324
http://dx.doi.org/10.48550/ARXIV.2405.04324
http://arxiv.org/abs/2405.04324

28]

[29]

[30]

[31]

[32]

[33]

P. Choy, P. Joshi, R. Kumar, S. Hashmi, S. Agrawal, Z. Gong, J. Fine,
T. Warkentin, A. J. Hartman, B. Ni, K. Korevec, K. Schaefer, S. Huffman,
Codegemma: Open code models based on gemma, CoRR abs/2406.11409
(2024). URL: https://doi.org/10.48550/arXiv.2406.11409. doi:10.
48550/ARXIV.2406.11409. arXiv:2406.11409.

P. Orvalho, M. Janota, V. Manquinho, CFaults: Model-Based Diagnosis
for Fault Localization in C Programs with Multiple Test Cases, in:
Formal Methods - 26th International Symposium, FM 2024, Milan, Italy,
2024, Proceedings, volume 14933 of Lecture Notes in Computer Science,
Springer Nature Switzerland, Cham, 2024, pp. 463-481. do0i:10.1007/
978-3-031-71162-6\ 24.

P. Orvalho, M. Janota, V. Manquinho, C-Pack of IPAs: A C90 Pro-
gram Benchmark of Introductory Programming Assignments, in: 2024
IEEE/ACM International Workshop on Automated Program Repair
(APR), ACM, ., 2024, pp. 14-21. URL: https://doi.org/10.1145/
3643788.3648010. doii10.1145/3643788.3648010.

P. Orvalho, M. Janota, V. Manquinho, Counterexample Guided Program
Repair Using Zero-Shot Learning and MaxSAT-based Fault Localization,
in: In the 39th Annual AAAI Conference on Artificial Intelligence, AAAI
2025, 2025.

A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence and Applications,
1OS Press, 2009.

F. Bacchus, M. Jarvisalo, R. Martins, Maximum Satisfiability, in:
A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of
Satisfiability, IOS Press, 2021, pp. 929 — 991.

F. E. Allen, Control flow analysis, in: R. S. Northcote (Ed.), Proceedings
of a Symposium on Compiler Optimization, Urbana-Champaign, Illinois,
USA, July 27-28, 1970, ACM, 1970, pp. 1-19.

J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence
graph and its use in optimization, ACM Trans. Program. Lang. Syst. 9
(1987) 319-349. URL: https://doi.org/10.1145/24039.24041. doii10.
1145/24039.24041.

36

https://doi.org/10.48550/arXiv.2406.11409
http://dx.doi.org/10.48550/ARXIV.2406.11409
http://dx.doi.org/10.48550/ARXIV.2406.11409
http://arxiv.org/abs/2406.11409
http://dx.doi.org/10.1007/978-3-031-71162-6_24
http://dx.doi.org/10.1007/978-3-031-71162-6_24
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/3643788.3648010
http://dx.doi.org/10.1145/3643788.3648010
https://doi.org/10.1145/24039.24041
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1145/24039.24041

[34]

[35]

[36]

[40]

[41]

A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley series in computer science / World student
series edition, Addison-Wesley, 1986.

P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, V. M. Manquinho,
Encodings for enumeration-based program synthesis, in: Principles and
Practice of Constraint Programming - 25th International Conference, CP
2019, Stamford, CT, USA, September 30 - October 4, 2019, Proceedings,
2019, pp. 583-599.

P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, V. M. Man-
quinho, SQUARES : A SQL synthesizer using query reverse en-
gineering, Proc. VLDB Endow. 13 (2020) 2853-2856. URL: http:
//www.vldb.org/pvldb/voll3/p2853-orvalho.pdf.

P. da Silva, SQUARES : A SQL Synthesizer Using Query Reverse Engi-
neering, Master’s thesis, Instituto Superior Técnico, Lisboa, Portugal,
2019.

P. M. O. M. da Silva, MENTOR: Automated Feedback for Introduc-
tory Programming Exercises, Ph.D. thesis, INSTITUTO SUPERIOR
TECNICO, 2025.

P. Orvalho, J. Piepenbrock, M. Janota, V. Manquinho, Project Proposal:
Learning Variable Mappings to Repair Programs, in: 7th Conference on
Artificial Intelligence and Theorem Proving, AITP, 2022.

R. Reiter, A theory of diagnosis from first principles, Artif. In-
tell. 32 (1987) 57-95. URL: https://doi.org/10.1016/0004-3702(87)
90062-2. doii10.1016/0004-3702(87)90062-2.

H. G. Rice, Classes of recursively enumerable sets and their decision
problems, Transactions of the American Mathematical Society 74 (1953)
358-366.

M. Jose, R. Majumdar, Cause clue clauses: error localization using
maximum satisfiability, in: Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, ACM, 2011, pp. 437-446.

37

http://www.vldb.org/pvldb/vol13/p2853-orvalho.pdf
http://www.vldb.org/pvldb/vol13/p2853-orvalho.pdf
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1016/0004-3702(87)90062-2
http://dx.doi.org/10.1016/0004-3702(87)90062-2

[43]

[44]

[46]

[47]

S. Lamraoui, S. Nakajima, A formula-based approach for auto-
matic fault localization of multi-fault programs, J. Inf. Process. 24
(2016) 88-98. URL: https://doi.org/10.2197/ipsjjip.24 .88l doi{10]
2197/1PSJJIP.24.88.

A. Ignatiev, A. Morgado, G. Weissenbacher, J. Marques-Silva, Model-
based diagnosis with multiple observations, in: S. Kraus (Ed.), Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI 2019, Macao, China, August 10-16, 2019, ijcai.org, 2019,
pp. 1108-1115. URL: https://doi.org/10.24963/ijcai.2019/155.
d0ii10.24963/IJCAI.2019/155.

A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, V. A. Saraswat,
Combinatorial sketching for finite programs, in: J. P. Shen, M. Martonosi
(Eds.), International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2006, pp. 404-415.

HuggingFace, , https://huggingface.co, 2024. [Online; accessed 1-
July-2024].

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, 1. Gat, X. E. Tan,
Y. Adi, J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov,
J. Bitton, M. Bhatt, C. Canton-Ferrer, A. Grattafiori, W. Xiong,
A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin, N. Usunier,
T. Scialom, G. Synnaeve, Code llama: Open foundation mod-
els for code, CoRR abs/2308.12950 (2023). URL: https://doil
org/10.48550/arXiv.2308.12950. doi:10.48550/ARXIV.2308.12950.
arXiv:2308.12950.

T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre,
M. Riviere, M. S. Kale, J. Love, P. Tafti, L. Hussenot, A. Chowd-
hery, A. Roberts, A. Barua, A. Botev, A. Castro-Ros, A. Slone,
A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson, B. Tsai, B. Shahri-
ari, C. L. Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ippolito,
D. Reid, E. Buchatskaya, E. Ni, E. Noland, G. Yan, G. Tucker, G. Mu-
raru, G. Rozhdestvenskiy, H. Michalewski, I. Tenney, 1. Grishchenko,
J. Austin, J. Keeling, J. Labanowski, J. Lespiau, J. Stanway, J. Bren-
nan, J. Chen, J. Ferret, J. Chiu, et al., Gemma: Open models based
on gemini research and technology, CoRR abs/2403.08295 (2024).

38

https://doi.org/10.2197/ipsjjip.24.88
http://dx.doi.org/10.2197/IPSJJIP.24.88
http://dx.doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.24963/ijcai.2019/155
http://dx.doi.org/10.24963/IJCAI.2019/155
https://huggingface.co
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
http://dx.doi.org/10.48550/ARXIV.2308.12950
http://arxiv.org/abs/2308.12950

[49]

[50]

URL: https://doi.org/10.48550/arXiv.2403.08295. doi:10.48550/
ARXTV.2403.08294. arXiv:2403.08295.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix,
B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, G. Lample, Llama: Open and efficient foundation lan-
guage models, CoRR abs/2302.13971 (2023). URL: https://doi.
org/10.48550/arXiv.2302.13971. doi:10.48550/ARXIV.2302.13971.
arXiv:2302.13971.

M. I. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. S. Behl, A. Ben-
haim, M. Bilenko, J. Bjorck, S. Bubeck, M. Cai, C. C. T. Mendes,
W. Chen, V. Chaudhary, P. Chopra, A. D. Giorno, G. de Rosa, M. Dixon,
R. Eldan, D. Tter, A. Garg, A. Goswami, S. Gunasekar, E. Haider,
J. Hao, R. J. Hewett, J. Huynh, M. Javaheripi, X. Jin, P. Kauft-
mann, N. Karampatziakis, D. Kim, M. Khademi, L. Kurilenko, J. R.
Lee, Y. T. Lee, Y. Li, C. Liang, W. Liu, E. Lin, Z. Lin, P. Madan,
A. Mitra, H. Modi, A. Nguyen, B. Norick, B. Patra, D. Perez-Becker,
T. Portet, R. Pryzant, H. Qin, M. Radmilac, C. Rosset, S. Roy,
O. Ruwase, O. Saarikivi, A. Saied, A. Salim, M. Santacroce, S. Shah,
N. Shang, H. Sharma, X. Song, M. Tanaka, X. Wang, R. Ward, G. Wang,
P. Witte, M. Wyatt, C. Xu, J. Xu, S. Yadav, F. Yang, Z. Yang, D. Yu,
C. Zhang, C. Zhang, J. Zhang, L. L. Zhang, Y. Zhang, Y. Zhang,
Y. Zhang, X. Zhou, Phi-3 technical report: A highly capable lan-
guage model locally on your phone, CoRR abs/2404.14219 (2024).
URL: https://doi.org/10.48550/arXiv.2404.14219. doi:10.48550/
ARXTV . 2404 14219. larXiv:2404.14219l

K. Tai, The tree-to-tree correction problem, J. ACM 26 (1979)
422-433. URL: https://doi.org/10.1145/322139.322143. doi:10.
1145/322139.322143.

K. Zhang, D. E. Shasha, Simple fast algorithms for the editing distance be-
tween trees and related problems, STAM J. Comput. 18 (1989) 1245-1262.
URL: https://doi.org/10.1137/0218082. doi:10.1137/0218082.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, X. Chen, Shaping program repair
space with existing patches and similar code, in: F. Tip, E. Bodden

39

https://doi.org/10.48550/arXiv.2403.08295
http://dx.doi.org/10.48550/ARXIV.2403.08295
http://dx.doi.org/10.48550/ARXIV.2403.08295
http://arxiv.org/abs/2403.08295
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
http://dx.doi.org/10.48550/ARXIV.2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2404.14219
http://dx.doi.org/10.48550/ARXIV.2404.14219
http://dx.doi.org/10.48550/ARXIV.2404.14219
http://arxiv.org/abs/2404.14219
https://doi.org/10.1145/322139.322143
http://dx.doi.org/10.1145/322139.322143
http://dx.doi.org/10.1145/322139.322143
https://doi.org/10.1137/0218082
http://dx.doi.org/10.1137/0218082

[54]

[58]

[59]

[60]

(Eds.), Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, ACM, 2018, pp. 298-309. URL: https://
doi.org/10.1145/3213846.3213871. doi:10.1145/3213846.3213871,

M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, 1. Titov,
M. Welling, Modeling relational data with graph convolutional networks,
in: The Semantic Web - 15th International Conference, ESWC 2018,
volume 10843 of Lecture Notes in Computer Science, Springer, 2018,
pp. 593-607. URL: https://doi.org/10.1007/978-3-319-93417-4 _
38. d0i:10.1007/978-3-319-93417-4\ 38.

PyTorchGeometric, Documentation, https://pytorch-geometric.
readthedocs.io/en/latest/modules/nn.html#torch geometric.
nn.conv.RGCNConv, 2022. Accessed 2022-08-12.

L. J. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, CoRR
http://arxiv.org/abs/1607.06450 (2016). URL: http://arxiv.org/abs/
160706450, arXiv:1607.06450.

P. Orvalho, M. Janota, V. M. Manquinho, MultIPAs: Applying Pro-
gram Transformations To Introductory Programming Assignments For
Data Augmentation, in: A. Roychoudhury, C. Cadar, M. Kim (Eds.),
Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2022, Singapore, Singapore, November 14-18; 2022, ACM, 2022,
pp. 1657-1661. URL: https://doi.org/10.1145/3540250.3558931.
doi:10.1145/3540250.3558931.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
3rd International Conference on Learning Representations, ICLR 2015,
2015. URL: http://arxiv.org/abs/1412.6980.

Lizard, Lizard: A simple code complexity analyser, https://github.
com/terryyin/lizard, 2024. Accessed: 2024-05-01.

X. Liu, S. Wang, P. Wang, D. Wu, Automatic grading of programming
assignments: an approach based on formal semantics, in: S. Beecham,
D. E. Damian (Eds.), Proceedings of the 41st International Conference

40

https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/3213846.3213871
http://dx.doi.org/10.1145/3213846.3213871
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
http://dx.doi.org/10.1007/978-3-319-93417-4_38
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.RGCNConv
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://doi.org/10.1145/3540250.3558931
http://dx.doi.org/10.1145/3540250.3558931
http://arxiv.org/abs/1412.6980
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard

[61]

[62]

[63]

[64]

[67]

on Software Engineering: Software Engineering Education and Training,

ICSE (SEET) 2019, IEEE / ACM, 2019, pp. 126-137.

Y. Ke, K. T. Stolee, C. L. Goues, Y. Brun, Repairing programs with
semantic code search (T), in: M. B. Cohen, L. Grunske, M. Whalen
(Eds.), 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, IEEE Computer Society, 2015, pp. 295-306.

A. Afzal, M. Motwani, K. T. Stolee, Y. Brun, C. L. Goues, Sosrepair:
Expressive semantic search for real-world program repair, IEEE Trans.
Software Eng. 47 (2019) 2162-2181. doi:10.1109/TSE.2019.2944914.

K. T. Stolee, S. G. Elbaum, D. Dobos, Solving the search for source
code, ACM Trans. Softw. Eng. Methodol. 23 (2014) 26:1-26:45. URL:
https://doi.org/10.1145/2581377. doi:10.1145/2581377.

S. P. Reiss, Semantics-based code search, in: 31st International Confer-
ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,

Canada, Proceedings, IEEE, 2009, pp. 243-253. doii10.1109/ICSE.2009.
5070575.

C. L. Goues, T. Nguyen, S. Forrest, W. Weimer, Genprog: A generic
method for automatic software repair, IEEE Trans. Software Eng. 38
(2012) 54-72.

F. Long, M. Rinard, Automatic patch generation by learning correct
code, in: R. Bodik, R. Majumdar (Eds.), Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
ACM, 2016, pp. 298-312. doi{10.1145/2837614.2837617.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, S. Chandra, Semfix: program
repair via semantic analysis, in: D. Notkin, B. H. C. Cheng, K. Pohl
(Eds.), 35th International Conference on Software Engineering, ICSE 13,
IEEE Computer Society, 2013, pp. 772-781.

S. Mechtaev, J. Yi, A. Roychoudhury, Directfix: Looking for simple
program repairs, in: A. Bertolino, G. Canfora, S. G. Elbaum (Eds.), 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, IEEE Computer Society, 2015, pp. 448-458.

41

http://dx.doi.org/10.1109/TSE.2019.2944914
https://doi.org/10.1145/2581377
http://dx.doi.org/10.1145/2581377
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1145/2837614.2837617

[69]

[70]

[72]

[74]

S. Mechtaev, J. Yi, A. Roychoudhury, Angelix: scalable multiline

program patch synthesis via symbolic analysis, in: L. K. Dillon, W. Visser,
L. A. Williams (Eds.), ICSE 2016, ACM, 2016, pp. 691-701.

D. M. Perry, D. Kim, R. Samanta, X. Zhang, Semcluster: clustering of
imperative programming assignments based on quantitative semantic
features, in: K. S. McKinley, K. Fisher (Eds.), Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, ACM,
2019, pp. 860-873.

I. Bouzenia, P. T. Devanbu, M. Pradel, Repairagent: An autonomous,
llm-based agent for program repair, in: 47th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2025, Ottawa, ON,
Canada, April 26 - May 6, 2025, IEEE, 2025, pp. 2188-2200. URL: https:
//doi.org/10.1109/ICSE55347.2025.00157. doii10.1109/ICSE55347 .
2025 00157

C. Spiess, D. Gros, K. S. Pai, M. Pradel, M. R. I. Rabin, A. Alipour,
S. Jha, P. Devanbu, T. Ahmed, Calibration and correctness of language
models for code, in: 47th IEEE/ACM International Conference on
Software Engineering, ICSE 2025, Ottawa, ON, Canada, April 26 - May
6, 2025, IEEE, 2025, pp. 540-552. URL: https://doi.org/10.1109/
ICSES5347.2025.00040. doi:10.1109/ICSE55347.2025.00040.

H. Ye, M. Monperrus, ITER: iterative neural repair for multi-location
patches, in: Proceedings of the 46th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20,
2024, ACM, 2024, pp. 10:1-10:13. URL: https://doi.org/10.1145/
3597503.3623337. d0ii10.1145/3597503.3623337.

M. H. Liffiton, B. E. Sheese, J. Savelka, P. Denny, Codehelp: Using large
language models with guardrails for scalable support in programming
classes, in: A. Miihling, I. Jormanainen (Eds.), Proceedings of the 23rd
Koli Calling International Conference on Computing Education Research,
Koli Calling 2023, Koli, Finland, November 13-18, 2023, ACM, 2023, pp.
8:1-8:11. URL: https://doi.org/10.1145/3631802.3631830. doi:10.
1145/3631802.3631830.

42

https://doi.org/10.1109/ICSE55347.2025.00157
https://doi.org/10.1109/ICSE55347.2025.00157
http://dx.doi.org/10.1109/ICSE55347.2025.00157
http://dx.doi.org/10.1109/ICSE55347.2025.00157
https://doi.org/10.1109/ICSE55347.2025.00040
https://doi.org/10.1109/ICSE55347.2025.00040
http://dx.doi.org/10.1109/ICSE55347.2025.00040
https://doi.org/10.1145/3597503.3623337
https://doi.org/10.1145/3597503.3623337
http://dx.doi.org/10.1145/3597503.3623337
https://doi.org/10.1145/3631802.3631830
http://dx.doi.org/10.1145/3631802.3631830
http://dx.doi.org/10.1145/3631802.3631830

[75]

78]

[80]

[81]

[82]

R. Abreu, P. Zoeteweij, A. J. C. van Gemund, Spectrum-based multiple
fault localization, in: ASE 2009, 24th IEEE/ACM International Con-
ference on Automated Software Engineering, Auckland, New Zealand,
November 16-20, 2009, IEEE Computer Society, 2009, pp. 88-99. URL:
https://doi.org/10.1109/ASE.2009.25. doi:10.1109/ASE.2009. 25.

W. E. Wong, V. Debroy, B. Choi, A family of code coverage-based
heuristics for effective fault localization, J. Syst. Softw. 83 (2010) 188-208.
URL: https://doi.org/10.1016/j.jss.2009.09.037. doi{10.1016/J!
ISS.2009.09.037.

L. Naish, H. J. Lee, K. Ramamohanarao, A model for spectra-
based software diagnosis, ACM Trans. Softw. Eng. Methodol. 20
(2011) 11:1-11:32. URL: https://doi.org/10.1145/2000791.2000795.
do0ii10.1145/2000791.2000795.

W. E. Wong, V. Debroy, R. Gao, Y. Li, The dstar method for effective
software fault localization, IEEE Trans. Reliab. 63 (2014) 290-308.
URL: https://doi.org/10.1109/TR.2013.2285319. doii10.1109/TR.
2013.2285319.

W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on
software fault localization, IEEE Trans. Software Eng. 42 (2016)
707-740. URL: https://doi.org/10.1109/TSE.2016.2521368. doi:10.
1109/TSE.2016.2521368.

R. Abreu, P. Zoeteweij, R. Golsteijn, A. J. C. van Gemund, A prac-
tical evaluation of spectrum-based fault localization, J. Syst. Softw.
82 (2009) 1780-1792. URL: https://doi.org/10.1016/j.jss.2009.
06.035. doi:10.1016/J.JSS.2009.06.035.

K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, Y. Le Traon, You
cannot fix what you cannot find! an investigation of fault localization
bias in benchmarking automated program repair systems, in: 2019 12th
IEEE conference on software testing, validation and verification (ICST),
IEEE, 2019, pp. 102-113.

B. Rothenberg, O. Grumberg, Must fault localization for program repair,
in: S. K. Lahiri, C. Wang (Eds.), Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,

43

https://doi.org/10.1109/ASE.2009.25
http://dx.doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/j.jss.2009.09.037
http://dx.doi.org/10.1016/J.JSS.2009.09.037
http://dx.doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/TR.2013.2285319
http://dx.doi.org/10.1109/TR.2013.2285319
http://dx.doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1016/J.JSS.2009.06.035

[83]

[84]

[85]

[36]

[38]

2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer
Science, Springer, 2020, pp. 658-680. URL: https://doi.org/10.1007/
978-3-030-53291-8 33. d0i:10.1007/978-3-030-53291-8\ 33.

M. Jose, R. Majumdar, Bug-assist: Assisting fault localization in ANSI-C
programs, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer Aided Ver-
ification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, Springer, 2011, pp. 504-509. URL: https://doi.org/10.1007/
978-3-642-22110-1 40. doi:10.1007/978-3-642-22110-1\ 40.

J. K. Feser, S. Chaudhuri, I. Dillig, Synthesizing data structure transfor-
mations from input-output examples, in: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015, 2015, pp. 229-239.

S. Lamraoui, S. Nakajima, A formula-based approach for automatic fault
localization of imperative programs, in: S. Merz, J. Pang (Eds.), Formal
Methods and Software Engineering - 16th International Conference on
Formal Engineering Methods, ICFEM 2014, Luxembourg, Luxembourg,
November 3-5, 2014. Proceedings, volume 8829 of Lecture Notes in Com-
puter Science, Springer, 2014, pp. 251-266. URL: https://doi.org/10.
1007/978-3-319-11737-9 17. d0i:10.1007/978-3-319-11737-9\ 17.

A. Griesmayer, S. Staber, R. Bloem, Automated fault localization for C
programs, in: R. Bloem, M. Roveri, F. Somenzi (Eds.), Proceedings of
the Workshop on Verification and Debugging, V&DQFLoC 2006, Seattle,
WA, USA, August 21, 2006, volume 174 of Electronic Notes in Theoretical
Computer Science, Elsevier, 2006, pp. 95-111. URL: https://doi.org/
10.1016/7.entcs.2006.12.032. doi:10.1016/J.ENTCS.2006.12.032.

F. Wotawa, M. Nica, I. Moraru, Automated debugging based on a con-
straint model of the program and a test case, J. Log. Algebraic Methods
Program. 81 (2012) 390-407. URL: https://doi.org/10.1016/j.jlap.
2012.03.002. doi:10.1016/J.JLAP.2012.03.002.

Y. Xie, A. Aiken, Scalable error detection using boolean satisfiability, in:
J. Palsberg, M. Abadi (Eds.), Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2005, Long Beach, California, USA, January 12-14, 2005, ACM, 2005, pp.

44

https://doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-030-53291-8_33
http://dx.doi.org/10.1007/978-3-030-53291-8_33
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
http://dx.doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1007/978-3-319-11737-9_17
http://dx.doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1016/j.entcs.2006.12.032
https://doi.org/10.1016/j.entcs.2006.12.032
http://dx.doi.org/10.1016/J.ENTCS.2006.12.032
https://doi.org/10.1016/j.jlap.2012.03.002
https://doi.org/10.1016/j.jlap.2012.03.002
http://dx.doi.org/10.1016/J.JLAP.2012.03.002

351-363. URL: https://doi.org/10.1145/1040305.1040334. doi:10.
1145/1040305.1040334.

[89] R. Konighofer, R. Bloem, Automated error localization and correction for
imperative programs, in: P. Bjesse, A. Slobodova (Eds.), International
Conference on Formal Methods in Computer-Aided Design, FMCAD ’11,
Austin, TX, USA, October 30 - November 02, 2011, FMCAD Inc., 2011,
pp. 91-100. URL: http://dl.acm.org/citation.cfm?id=2157671.

45

https://doi.org/10.1145/1040305.1040334
http://dx.doi.org/10.1145/1040305.1040334
http://dx.doi.org/10.1145/1040305.1040334
http://dl.acm.org/citation.cfm?id=2157671

	Introduction
	Problem Description
	Paper Overview and Contributions

	Preliminaries
	MENTOR
	Program Clustering
	Variable Alignment
	Fault Localization
	Counterexample Guided Automated Repair

	Experimental Results
	Large Language Models (LLMs)
	Evaluation
	Correct Implementations
	Variable Mappings

	Discussion

	Related Work
	Conclusion

