
Learning Variable Mappings to Repair
and Verify Programs

Pedro Orvalho

Instituto Superior Técnico
University of Lisbon

Portugal

Wednesday, 29th March 2023

Motivation

• The problem of program equivalence is undecidable;

• Thus, repairing an incorrect program based on a correct implementation is
challenging.

• To compare both programs, program repair tools need to find a relation between
these programs’ variables.

2 / 52

Motivation

• The problem of program equivalence is undecidable;
• Thus, repairing an incorrect program based on a correct implementation is

challenging.

• To compare both programs, program repair tools need to find a relation between
these programs’ variables.

3 / 52

Motivation

• The problem of program equivalence is undecidable;
• Thus, repairing an incorrect program based on a correct implementation is

challenging.
• To compare both programs, program repair tools need to find a relation between

these programs’ variables.

4 / 52

Motivation

Function that finds and returns the maximum
number among n1, n2 and n3.

1 int max(int n1, int n2, int n3)
2 {
3 int m = n1 > n2 ? n1 : n2;
4 return n3 > m ? n3 : m;
5 }

Function that finds and returns the maximum
number among x, y and z.

1 int max(int x, int y, int z){
2 int m = 0;
3 m = x > m ? x : m;
4 m = y > m ? y : m;
5 return z > m ? z : m;
6 }

5 / 52

Motivation

Function that finds and returns the maximum
number among n1, n2 and n3.

1 int max(int n1, int n2, int n3)
2 {
3 int m = n1 > n2 ? n1 : n2;
4 return n3 > m ? n3 : m;
5 }

Function that finds and returns the maximum
number among x, y and z.

1 int max(int x, int y, int z){
2 int m = 0;
3 m = x > m ? x : m;
4 m = y > m ? y : m;
5 return z > m ? z : m;
6 }

Variable Mapping: {m : m; n1 : x; n2 : y; n3 : z}.

6 / 52

Motivation

Function that finds and returns the maximum
number among n1, n2 and n3.

1 int max(int n1, int n2, int n3)
2 {
3 int m = n1 > n2 ? n1 : n2;
4 return n3 > m ? n3 : m;
5 }

Function that finds and returns the maximum
number among x, y and z.

1 int max(int x, int y, int z){
2 int m = 0;
3 m = x > m ? x : m;
4 m = y > m ? y : m;
5 return z > m ? z : m;
6 }

Variable Mapping: {m : m; n1 : x; n2 : y; n3 : z}.

7 / 52

Motivation

Besides program repair [Ahmed et al., 2022], the task of mapping variables between
programs is also important for:
• program analysis;
• program equivalence;
• program verification;
• program clustering;
• clone detection;
• plagiarism detection.

8 / 52

Goal

• Create a graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

• Use our program representation to learn how to map the set of variables between a
correct program and a faulty one using graph neural networks (GNNs).

9 / 52

Goal

• Create a graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

• Use our program representation to learn how to map the set of variables between a
correct program and a faulty one using graph neural networks (GNNs).

10 / 52

Program Representation

An expression that uses int variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID a expr

ID a op − ID b

(a) Part of the AST representation.

11 / 52

Program Representation

An expression that uses int variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID expr

a

ID − ID

b

(b) Our program representation.

12 / 52

Program Representation

An expression that uses int variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID expr

a

ID − ID

b

(c) Our program representation.

13 / 52

Program Representation

An expression that uses int variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID expr

a

ID − ID

b

(d) Our program representation.

14 / 52

Program Representation

An expression that uses int variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID expr

a

ID − ID

b

(e) Our program representation.

15 / 52

Graph Neural Networks (GNNs)

• We are using a Relational Graph Convolutional Neural Network (RGCN);

• We perform message passing between the nodes of our representations, so that
information can be passed between the local constituents;

• After several message passing rounds, we obtain numerical vectors corresponding to
each variable node in the two programs;

• We compute scalar products between each possible combination of variable nodes in
the two programs, followed by a softmax function.

16 / 52

Graph Neural Networks (GNNs)

• We are using a Relational Graph Convolutional Neural Network (RGCN);
• We perform message passing between the nodes of our representations, so that

information can be passed between the local constituents;

• After several message passing rounds, we obtain numerical vectors corresponding to
each variable node in the two programs;

• We compute scalar products between each possible combination of variable nodes in
the two programs, followed by a softmax function.

17 / 52

Graph Neural Networks (GNNs)

• We are using a Relational Graph Convolutional Neural Network (RGCN);
• We perform message passing between the nodes of our representations, so that

information can be passed between the local constituents;
• After several message passing rounds, we obtain numerical vectors corresponding to

each variable node in the two programs;

• We compute scalar products between each possible combination of variable nodes in
the two programs, followed by a softmax function.

18 / 52

Graph Neural Networks (GNNs)

• We are using a Relational Graph Convolutional Neural Network (RGCN);
• We perform message passing between the nodes of our representations, so that

information can be passed between the local constituents;
• After several message passing rounds, we obtain numerical vectors corresponding to

each variable node in the two programs;
• We compute scalar products between each possible combination of variable nodes in

the two programs, followed by a softmax function.

19 / 52

C-Pack-IPAs: Dataset of Introductory
Programming Assignments (IPAs)

Table: Description of C-Pack-IPAs [Orvalho et al., 2022].

Academic
Year #IPAs #Correct

Submissions
#Incorrect
Submissions

1st Year 10 238 107
2nd Year 10 78 60

20 / 52

Data Augmentation

• Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultIPAs [Orvalho et al., 2022] to generate a dataset of
pairs of correct/incorrect programs.

• The second reason to use MultIPAs was that our dataset, C-Pack-IPAs, is too
small, i.e., contains only a few hundred submissions.

21 / 52

Data Augmentation

• Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultIPAs [Orvalho et al., 2022] to generate a dataset of
pairs of correct/incorrect programs.

• The second reason to use MultIPAs was that our dataset, C-Pack-IPAs, is too
small, i.e., contains only a few hundred submissions.

22 / 52

Data Augmentation

The main goal of MultIPAs is to augment IPAs benchmarks with:
• more semantically correct implementations (program mutations);

• new semantically incorrect programs (program mutilations/bugs);
• variable mappings between the original program and the mutated and/or mutilated

program;
• information about the types and the number of bugs present in each generated

incorrect program.

23 / 52

Data Augmentation

The main goal of MultIPAs is to augment IPAs benchmarks with:
• more semantically correct implementations (program mutations);
• new semantically incorrect programs (program mutilations/bugs);

• variable mappings between the original program and the mutated and/or mutilated
program;

• information about the types and the number of bugs present in each generated
incorrect program.

24 / 52

Data Augmentation

The main goal of MultIPAs is to augment IPAs benchmarks with:
• more semantically correct implementations (program mutations);
• new semantically incorrect programs (program mutilations/bugs);
• variable mappings between the original program and the mutated and/or mutilated

program;

• information about the types and the number of bugs present in each generated
incorrect program.

25 / 52

Data Augmentation

The main goal of MultIPAs is to augment IPAs benchmarks with:
• more semantically correct implementations (program mutations);
• new semantically incorrect programs (program mutilations/bugs);
• variable mappings between the original program and the mutated and/or mutilated

program;
• information about the types and the number of bugs present in each generated

incorrect program.

26 / 52

MultIPAs

MultIPAs can perform six syntactic program mutations to change the programs’ syntax
but not their semantics, such as:

• Comparison Expression Mirroring;
• If-else-statements Swapping;
• Increment/Decrement Operators Mirroring;
• Variable Declarations Reordering;
• For-2-While Translation;
• Variable Addition.

27 / 52

MultIPAs

MultIPAs can perform six syntactic program mutations to change the programs’ syntax
but not their semantics, such as:
• Comparison Expression Mirroring;
• If-else-statements Swapping;
• Increment/Decrement Operators Mirroring;
• Variable Declarations Reordering;
• For-2-While Translation;
• Variable Addition.

28 / 52

MultIPAs

• Next, MultIPAs can introduce three bugs:

• wrong comparison operator (WCO);
• variable misuse (VM);
• missing expression (ME).

29 / 52

MultIPAs

• Next, MultIPAs can introduce three bugs:
• wrong comparison operator (WCO);

• variable misuse (VM);
• missing expression (ME).

30 / 52

MultIPAs

• Next, MultIPAs can introduce three bugs:
• wrong comparison operator (WCO);
• variable misuse (VM);

• missing expression (ME).

31 / 52

MultIPAs

• Next, MultIPAs can introduce three bugs:
• wrong comparison operator (WCO);
• variable misuse (VM);
• missing expression (ME).

32 / 52

Data Augmentation

Original program.
1 int main(){
2 int n;
3 int i, s;
4 scanf("%d", &n);
5 s=0;
6 for(i=1; i<=n; i++){
7 s = s+i;
8 printf("%d\n",s);
9 }

10

11 printf("%d\n",s);
12 return 0;
13 }

Incorrect program.
1 int main(){
2 int n, s, i, y;
3 scanf("%d", &n);
4 s=0;
5 i = 1;
6 while(n>=i){
7

8 printf("%d\n",s);
9 ++i;

10 }
11 printf("%d\n",s);
12 return 0;
13 }

33 / 52

C-Pack-IPAs: Augmented Dataset

Table: The description of the training, validation, and evaluation sets based on C-Pack-IPAs.

Buggy Programs
WCO Bug VM Bug ME Bug All Bugs

Training set (1st Year) 3372 5170 2908 11450
Validation set (1st Year) 1457 1457 1023 3937
Evaluation set (2nd Year) 1078 1936 1152 4166

34 / 52

Use Cases: Program Repair

• We use variable mappings to repair an incorrect program using a correct
implementation for the same IPA without considering the programs’ structures.

• We claim that variable mappings are informative enough to repair these three
realistic types of bugs.

35 / 52

Use Cases: Program Repair

• We use variable mappings to repair an incorrect program using a correct
implementation for the same IPA without considering the programs’ structures.

• We claim that variable mappings are informative enough to repair these three
realistic types of bugs.

36 / 52

Use Cases: Program Repair

General idea:
• Given a buggy program, we search for and try to repair all three types of bugs;

• First, we rename all the variables in the incorrect program based on the variable
mapping;

• Then, by comparing the expressions of both programs, we try to fix the incorrect one
by replacing the expressions that do not appear in the correct program, with the
correct program’s expressions;

• Whenever we find a possible fix, we check if the program is correct using the test
suite.

37 / 52

Use Cases: Program Repair

General idea:
• Given a buggy program, we search for and try to repair all three types of bugs;
• First, we rename all the variables in the incorrect program based on the variable

mapping;

• Then, by comparing the expressions of both programs, we try to fix the incorrect one
by replacing the expressions that do not appear in the correct program, with the
correct program’s expressions;

• Whenever we find a possible fix, we check if the program is correct using the test
suite.

38 / 52

Use Cases: Program Repair

General idea:
• Given a buggy program, we search for and try to repair all three types of bugs;
• First, we rename all the variables in the incorrect program based on the variable

mapping;
• Then, by comparing the expressions of both programs, we try to fix the incorrect one

by replacing the expressions that do not appear in the correct program, with the
correct program’s expressions;

• Whenever we find a possible fix, we check if the program is correct using the test
suite.

39 / 52

Use Cases: Program Repair

General idea:
• Given a buggy program, we search for and try to repair all three types of bugs;
• First, we rename all the variables in the incorrect program based on the variable

mapping;
• Then, by comparing the expressions of both programs, we try to fix the incorrect one

by replacing the expressions that do not appear in the correct program, with the
correct program’s expressions;

• Whenever we find a possible fix, we check if the program is correct using the test
suite.

40 / 52

Results

41 / 52

Training

Table: Validation mappings fully correct after 20 training epochs.

Buggy Programs
WCO Bug VM Bug ME Bug All Bugs

Accuracy 93.7% 95.8% 93.4% 96.49%

42 / 52

Evaluation

Table: The number of correct variable mappings generated by our GNN on the evaluation dataset and the
average overlap coefficients between the real mappings and our GNN’s variable mappings.

Buggy Programs
Evaluation Metric WCO Bug VM Bug ME Bug All Bugs
Correct Mappings 87.38% 81.87% 79.95% 82.77%
Avg Overlap Coefficient 96.99% 94.28% 94.51% 95.05%

43 / 52

Ablation Study

Table: Percentage of variable mappings fully correct on the validation set for different sets of edges used.
Each type of edge is represented by an index using the mapping: {0: AST; 1: sibling; 2: write; 3: read; 4:
chronological}.

Edges Used All (1,2,3,4) (0,2,3,4) (0,1,3,4) (0,1,2,4) (0,1,2,3) (0,1)

Accuracy 96.49% 52.53% 73.76% 95.45% 94.87% 96.06% 94.74%

44 / 52

Repairing Programs

Table: The number of programs repaired by each different repair technique: Verifix, Clara, and our
repair approach based on our GNN’s variable mappings. The last row shows the results of repairing the
programs using the real variable mappings (ground truth).

Buggy Programs Not Succeeded
Repair Method WCO Bug VM Bug ME Bug All Bugs % Failed % Timeouts (60s)

Verifix 555 (51.48%) 1292 (66.74%) 741 (64.32%) 2588 (62.12%) 1471 (35.31%) 107 (2.57%)
Clara 722 (66.98%) 1517 (78.36%) 764 (66.32%) 3003 (72.08%) 1153 (27.68%) 10 (0.24%)
GNN 942 (87.38%) 1537 (79.39%) 898 (77.95%) 3377 (81.06%) 711 (17.07%) 78 (1.87%)

Ground Truth 1078 (100.0%) 1877 (96.95%) 1129 (98.0%) 4084 (98.03%) 0 (0.0%) 82 (1.97%)

45 / 52

Repairing Programs

0 1000 2000 3000 4000
#Programs Repaired

0

10

20

30

40

50

60

Ti
m

e
(s

)

Ground Truth
GNN
Clara
Verifix

Figure: Cactus plot - The time spent by each method repairing each program of the evaluation dataset,
using a timeout of 60 seconds.

46 / 52

Use-case: Program Verification

• We can also use the variable mappings to map assertions between different programs.

• This way, we can automatically verify students’ submissions, using
CBMC [Clarke et al., 2004], based on similar previously submitted correct
implementations for the same programming exercise.

47 / 52

Use-case: Program Verification

• We can also use the variable mappings to map assertions between different programs.
• This way, we can automatically verify students’ submissions, using

CBMC [Clarke et al., 2004], based on similar previously submitted correct
implementations for the same programming exercise.

48 / 52

Example: Program Verification
Variable Mapping: {n : l; i : j}.

A semantically correct student’s
implementation.

1 int main(){
2 int n, i;
3 scanf("%d", &n);
4 for(i = 1; i <= n; i++){
5 assert(1 <= i && i <= n);
6 printf("%d\n", i);
7 }
8 return 0;
9 }

A semantically incorrect student’s implementation
since the variable j in the main function is not
initialized.

1 void loop(int j, int l){
2 while (l >= j){
3 assert(1 <= j && j <= l);
4 printf("%d\n", j);
5 ++j;
6 }
7 }
8 int main(){
9 int j, l;

10 scanf("%d", &l);
11 loop(j, l);
12 return 0;
13 }

49 / 52

Obrigado!
Děkuju!

Thank you!

50 / 52

References

Clarke, Edmund and Kroening, Daniel and Lerda, Flavio (2004)
A Tool for Checking ANSI-C Programs.
TACAS 04, 168–176.

Gulwani, Sumit and Radiček, Ivan and Zuleger, Florian (2018)
Automated clustering and program repair for introductory programming assignments.
PLDI 18 52(4), 465 – 480.

Ahmed, Umair Z and Fan, Zhiyu and Yi, Jooyong and Al-Bataineh, Omar I and Roychoudhury, Abhik
(2022)
Verifix: Verified repair of programming assignments.
TOSEM 22 12(3), 45 – 678.

51 / 52

References

Orvalho, Pedro and Janota, Mikoláš and Manquinho, Vasco (2022)
C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming Assignments.
arXiv:2206.08768.
Orvalho, Pedro and Piepenbrock, Jelle and Janota, Mikoláš and Manquinho, Vasco (2022)
Project Proposal: Learning Variable Mappings to Repair Programs.
AITP 2022.
Orvalho, Pedro and Janota, Mikoláš and Manquinho, Vasco (2022)
MultIPAs: Applying Program Transformations to Introductory Programming Assignments for Data
Augmentation.
ESEC/FSE 2022.

52 / 52

Appendix

53 / 52

#Correct/Incorrect Mappings vs #Variables

0 2 4 6 8
#Variables per program

0

200

400

600

800

1000

#P
ro

gr
am

s

All Buggy Program
#Incorrect Mappings
#Correct Mappings

0 2 4 6 8
#Variables per program

0

50

100

150

200

250

300

350

#P
ro

gr
am

s

Wrong Comparison Operator
#Incorrect Mappings
#Correct Mappings

0 2 4 6 8
#Variables per program

0

100

200

300

400

500

#P
ro

gr
am

s

Variable Misuse
#Incorrect Mappings
#Correct Mappings

0 2 4 6 8
#Variables per program

0

50

100

150

200

250

300

#P
ro

gr
am

s

Missing Expression
#Incorrect Mappings
#Correct Mappings

GNN Model trained on All Buggy Programs

54 / 52

Dataset Generation using MultIPAs

P3.

P1.

P2.

PN.

N Correct
Students’

Submissions

Mutated
Programs

Buggy
Programs

Mutation 1

Mutation 2

Mutation 31

Mutation 1

Mutation 2

Mutation 31

Mutation 1

Mutation 2

Mutation 31

Mutation 1

Mutation 2

Mutation 31

Bug 1
B2
B3

Bug 3

Bug 1
B2
B3

Bug 3

Bug 1
B2
B3

Bug 3

Bug 1
B2
B3

Bug 3

P1i1.

P1i2.

P1iK.

P2i1.

P2i2.

P2iJ.

P3i1.

P3i2.

P3iI.

PNi1.

PNi2.

PNiH

Generated Dataset
(Pairs of correct programs and buggy programs)

P1.

P1.

P1.

,
,

,

P1i1.

P1i2.

P1iK.

P2.

P2.

P2.

,
,

,

P2i1.

P2i2.

P2iJ.

P3.

P3.

P3.

,
,

,

P3i1.

P3i2.

P3iI.

PN.

PN.

PN.

,
,

,

PNi1.

PNi2.

PNiH.

55 / 52

Overlap coefficient

The overlap or Szymkiewicz–Simpson coefficient measures the overlap between two sets
(e.g. mappings). This metric can be calculated by dividing the size of the intersection of
two sets by the size of the smaller set, as follows:

overlap(A,B) =
|A ∩ B|

min(|A|, |B|)
(1)

An overlap of 100% means that both sets are equal or one of them is a subset of the
other. The opposite, 0% overlap, means there is no intersection between both sets.

56 / 52

	Motivation
	Program Representation
	Graph Neural Networks (GNNs)
	Data Augmentation
	Use-cases: Program Repair
	Results
	Use-case: Program Verification
	Appendix

