
CFaults: Model-Based Diagnosis for
Fault Localization in C with

Multiple Test Cases
Pedro Orvalho 1, Mikoláš Janota 2 and Vasco Manquinho 1

1INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
2CIIRC, Czech Technical University in Prague, Czechia

FM 24, Milan, Italy

Thursday 12th September, 2024

Motivation

• Debugging is one of the most time-consuming and expensive tasks in software
development.

• In 2000, the total cost of the work done in preparation for Year 2000 Problem likely
surpassed 400 Billion US$ [The Guardian, 2019];

• In 2024, the estimated global cost of Crowdstrike’s error that hit Microsoft systems, is
24 Billion US$ [The Sun UK, 2024].

2 / 65

Motivation

• Debugging is one of the most time-consuming and expensive tasks in software
development.

• In 2000, the total cost of the work done in preparation for Year 2000 Problem likely
surpassed 400 Billion US$ [The Guardian, 2019];

• In 2024, the estimated global cost of Crowdstrike’s error that hit Microsoft systems, is
24 Billion US$ [The Sun UK, 2024].

3 / 65

Motivation

• Debugging is one of the most time-consuming and expensive tasks in software
development.

• In 2000, the total cost of the work done in preparation for Year 2000 Problem likely
surpassed 400 Billion US$ [The Guardian, 2019];

• In 2024, the estimated global cost of Crowdstrike’s error that hit Microsoft systems, is
24 Billion US$ [The Sun UK, 2024].

4 / 65

Fault Localization

• Given a buggy program, fault localization (FL) involves identifying locations in the
program that could cause a faulty behaviour (bug).

Programmer Fault Localization Bug Report

5 / 65

Formula-Based Fault Localization (FBFL)
• FBFL methods encode the localization problem into several optimization problems

to identify a minimal set of bugs (diagnoses).

Programmer

Formula-Based
Fault Localization

Bug Report

Test
Suite

N Diagnoses

2.

1.

N.

K Test Cases

Test 1

Test 2

Test K

3.

6 / 65

Current Formula-Based Fault Localization

1: Faulty program example. Faulty lines:
{4,6,8}.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 if (f > s && s <= t)
7 printf("%d",s);
8 if (f > t && s > t)
9 printf("%d",t);

10 return 0;
11 }

Table 1: Test-suite.

Input Output
t0 1 2 3 3
t1 -1 -2 -3 -1
t2 1 2 1 2

7 / 65

Current Formula-Based Fault Localization

2: Faulty program example. Faulty lines:
{4,6,8}.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 if (f > s && s <= t)
7 printf("%d",s);
8 if (f > t && s > t)
9 printf("%d",t);

10 return 0;
11 }

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {3,9} {4,6,8}
Table 2: Number of diagnoses (faulty statements)
generated by BugAssist [Jose et al., 2011] and
SNIPER [Lamraoui et al., 2016] per test.

8 / 65

Current Formula-Based Fault Localization

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {3,9} {4,6,8}
Table 3: Number of diagnoses (faulty statements)
generated by BugAssist [Jose et al., 2011] and
SNIPER [Lamraoui et al., 2016] per test.

Current Limitations
FBFL tools especially for programs with
multiple faults:

• do not ensure a minimal
diagnosis across all failing tests
(e.g., BugAssist);

• may produce an overwhelming
number of redundant sets of
diagnoses (e.g., SNIPER).

9 / 65

Current Formula-Based Fault Localization

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {3,9} {4,6,8}
Table 3: Number of diagnoses (faulty statements)
generated by BugAssist [Jose et al., 2011] and
SNIPER [Lamraoui et al., 2016] per test.

Current Limitations
FBFL tools especially for programs with
multiple faults:

• do not ensure a minimal
diagnosis across all failing tests
(e.g., BugAssist);

• may produce an overwhelming
number of redundant sets of
diagnoses (e.g., SNIPER).

10 / 65

Current Formula-Based Fault Localization

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9

#Total
Unique Diagnoses 32 1297

Final Diagnosis {3,9} {4,6,8}
Table 3: Number of diagnoses (faulty statements)
generated by BugAssist [Jose et al., 2011] and
SNIPER [Lamraoui et al., 2016] per test.

Current Limitations
FBFL tools especially for programs with
multiple faults:

• do not ensure a minimal
diagnosis across all failing tests
(e.g., BugAssist);

• may produce an overwhelming
number of redundant sets of
diagnoses (e.g., SNIPER).

11 / 65

Our Work

• We formulate the FL problem as a single optimization problem;

• We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called CFaults.

12 / 65

Our Work

• We formulate the FL problem as a single optimization problem;
• We leverage MaxSAT and the theory of Model-Based Diagnosis

(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called CFaults.

13 / 65

Our Work

• We formulate the FL problem as a single optimization problem;
• We leverage MaxSAT and the theory of Model-Based Diagnosis

(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called CFaults.

14 / 65

Model-Based Diagnosis

• A system description P is composed of a set of components C = {c1, . . . , cn}.

• Each component in C can be declared healthy or unhealthy.
• For each component c 2 C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.
• P is described by a CNF formula, where Fc denotes the encoding of component c:

P ,
^

c2C
(¬h(c) _ Fc) (1)

15 / 65

Model-Based Diagnosis

• A system description P is composed of a set of components C = {c1, . . . , cn}.
• Each component in C can be declared healthy or unhealthy.

• For each component c 2 C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.
• P is described by a CNF formula, where Fc denotes the encoding of component c:

P ,
^

c2C
(¬h(c) _ Fc) (1)

16 / 65

Model-Based Diagnosis

• A system description P is composed of a set of components C = {c1, . . . , cn}.
• Each component in C can be declared healthy or unhealthy.
• For each component c 2 C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.

• P is described by a CNF formula, where Fc denotes the encoding of component c:

P ,
^

c2C
(¬h(c) _ Fc) (1)

17 / 65

Model-Based Diagnosis

• A system description P is composed of a set of components C = {c1, . . . , cn}.
• Each component in C can be declared healthy or unhealthy.
• For each component c 2 C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.
• P is described by a CNF formula, where Fc denotes the encoding of component c:

P ,
^

c2C
(¬h(c) _ Fc) (1)

18 / 65

Model-Based Diagnosis

• Observations represent deviations from the expected system behaviour.

• An observation, denoted as o, to be encodable in CNF as a set of unit clauses.
• In this work, the failing test cases represent the set of observations.
• A system P is considered faulty if there exists an inconsistency with a given

observation o when all components are declared healthy:

P ^ o ^

^
c2C

h(c) ✏ ? (2)

19 / 65

Model-Based Diagnosis

• Observations represent deviations from the expected system behaviour.
• An observation, denoted as o, to be encodable in CNF as a set of unit clauses.

• In this work, the failing test cases represent the set of observations.
• A system P is considered faulty if there exists an inconsistency with a given

observation o when all components are declared healthy:

P ^ o ^

^
c2C

h(c) ✏ ? (2)

20 / 65

Model-Based Diagnosis

• Observations represent deviations from the expected system behaviour.
• An observation, denoted as o, to be encodable in CNF as a set of unit clauses.
• In this work, the failing test cases represent the set of observations.

• A system P is considered faulty if there exists an inconsistency with a given
observation o when all components are declared healthy:

P ^ o ^

^
c2C

h(c) ✏ ? (2)

21 / 65

Model-Based Diagnosis

• Observations represent deviations from the expected system behaviour.
• An observation, denoted as o, to be encodable in CNF as a set of unit clauses.
• In this work, the failing test cases represent the set of observations.
• A system P is considered faulty if there exists an inconsistency with a given

observation o when all components are declared healthy:

P ^ o ^

^
c2C

h(c) ✏ ? (2)

22 / 65

Model-Based Diagnosis

• The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

• For a given MBD problem hP, C, oi, a set of system components � ✓ C is a
diagnosis iff:

P ^ o ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (3)

• A diagnosis � is minimal iff no subset of �, �0 (�, is a diagnosis, and � is of
minimal cardinality if there is no other diagnosis �00

✓ C with |�00
| < |�|.

• A diagnosis is redundant if it is not subset-minimal [Ignatiev et al., 2019].

23 / 65

Model-Based Diagnosis

• The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

• For a given MBD problem hP, C, oi, a set of system components � ✓ C is a
diagnosis iff:

P ^ o ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (3)

• A diagnosis � is minimal iff no subset of �, �0 (�, is a diagnosis, and � is of
minimal cardinality if there is no other diagnosis �00

✓ C with |�00
| < |�|.

• A diagnosis is redundant if it is not subset-minimal [Ignatiev et al., 2019].

24 / 65

Model-Based Diagnosis

• The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

• For a given MBD problem hP, C, oi, a set of system components � ✓ C is a
diagnosis iff:

P ^ o ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (3)

• A diagnosis � is minimal iff no subset of �, �0 (�, is a diagnosis, and � is of
minimal cardinality if there is no other diagnosis �00

✓ C with |�00
| < |�|.

• A diagnosis is redundant if it is not subset-minimal [Ignatiev et al., 2019].

25 / 65

Model-Based Diagnosis

• The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

• For a given MBD problem hP, C, oi, a set of system components � ✓ C is a
diagnosis iff:

P ^ o ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (3)

• A diagnosis � is minimal iff no subset of �, �0 (�, is a diagnosis, and � is of
minimal cardinality if there is no other diagnosis �00

✓ C with |�00
| < |�|.

• A diagnosis is redundant if it is not subset-minimal [Ignatiev et al., 2019].

26 / 65

Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
• The set of clauses that encode P represents the set of hard clauses;

• The soft clauses consists of unit clauses that aim to maximize the set of healthy
components, i.e.,:

V
c2C h(c);

• This encoding enables enumerating subset minimal diagnoses, considering a
single observation;

27 / 65

Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
• The set of clauses that encode P represents the set of hard clauses;
• The soft clauses consists of unit clauses that aim to maximize the set of healthy

components, i.e.,:
V

c2C h(c);

• This encoding enables enumerating subset minimal diagnoses, considering a
single observation;

28 / 65

Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
• The set of clauses that encode P represents the set of hard clauses;
• The soft clauses consists of unit clauses that aim to maximize the set of healthy

components, i.e.,:
V

c2C h(c);
• This encoding enables enumerating subset minimal diagnoses, considering a

single observation;

29 / 65

Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

• We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).

30 / 65

Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.
• We generate only minimal diagnoses capable of identifying all faulty components

within the system, in our case, a C program;

• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).

31 / 65

Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.
• We generate only minimal diagnoses capable of identifying all faulty components

within the system, in our case, a C program;
• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).

32 / 65

Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.
• We generate only minimal diagnoses capable of identifying all faulty components

within the system, in our case, a C program;
• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).

33 / 65

Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.
• We generate only minimal diagnoses capable of identifying all faulty components

within the system, in our case, a C program;
• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).

34 / 65

Model-Based Diagnosis with Multiple Test Cases

• The set of unhealthy components (h(c) = 0), corresponds to a subset-minimal
aggregated diagnosis.

• This diagnosis is a subset-minimal of components that, when declared unhealthy
(deactivated), make the system consistent with all observations, as follows:

^
oi2O

(Pi ^ oi) ^
^

c2C\�
h(c) ^

^
c2�

¬h(c) 2 ? (4)

35 / 65

Model-Based Diagnosis with Multiple Test Cases

• The set of unhealthy components (h(c) = 0), corresponds to a subset-minimal
aggregated diagnosis.

• This diagnosis is a subset-minimal of components that, when declared unhealthy
(deactivated), make the system consistent with all observations, as follows:

^
oi2O

(Pi ^ oi) ^
^

c2C\�
h(c) ^

^
c2�

¬h(c) 2 ? (4)

36 / 65

CFaults

Program P

Test
Suite

Localized
Faults

CFaults

t1 = {i1 , o1}

t2 = {i2 , o2}

tn = {in , on}

Unroller Instrumentalizer CBMC

MaxSAT
Encoder

Oracle
(MaxSAT Solver)

Refinement
Step

Pu Pi

CNF(Pi)

WCNF(Pi)1st iteration

37 / 65

Program unrolling

• An unrolled program is the
original program expanded
m times;

• It encodes the execution of
all failing tests within the
program;

1 float _input_f0[3] = {1, 2, 3};
2 char _out_0[2] = "3";
3 int _ioff_f0 = 0, _ooff_0 = 0;
4 // ... inputs and outputs for the other tests
5 int main(){
6 scope_0:{
7 int f_0, s_0, t_0;
8 f_0 = _input_f0[_ioff_f0++];
9 s_0 = _input_f0[_ioff_f0++];

10 t_0 = _input_f0[_ioff_f0++];
11 if ((f_0 < s_0) && (f_0 >= t_0))
12 _ooff_0 = printInt(_out_0, _ooff_0, f_0);
13 if ((f_0 > s_0) && (s_0 <= t_0))
14 _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 if ((f_0 > t_0) && (s_0 > t_0))
16 _ooff_0 = printInt(_out_0, _ooff_0, t_0);
17 goto scope_1;
18 }
19 // ... scope_1 and scope_2
20 final_step:
21 assert(strcmp(_out_0, "3") != 0 // other assertions);
22 }

38 / 65

Program unrolling

For each scope, CFaults:
• generates fresh variables and

functions;
• establishes variables

representing the inputs and
outputs;

• embeds an assertion
capturing all the
specifications.

1 float _input_f0[3] = {1, 2, 3};
2 char _out_0[2] = "3";
3 int _ioff_f0 = 0, _ooff_0 = 0;
4 // ... inputs and outputs for the other tests
5 int main(){
6 scope_0:{
7 int f_0, s_0, t_0;
8 f_0 = _input_f0[_ioff_f0++];
9 s_0 = _input_f0[_ioff_f0++];

10 t_0 = _input_f0[_ioff_f0++];
11 if ((f_0 < s_0) && (f_0 >= t_0))
12 _ooff_0 = printInt(_out_0, _ooff_0, f_0);
13 if ((f_0 > s_0) && (s_0 <= t_0))
14 _ooff_0 = printInt(_out_0, _ooff_0, s_0);
15 if ((f_0 > t_0) && (s_0 > t_0))
16 _ooff_0 = printInt(_out_0, _ooff_0, t_0);
17 goto scope_1;
18 }
19 // ... scope_1 and scope_2
20 final_step:
21 assert(strcmp(_out_0, "3") != 0 // other assertions);
22 }

39 / 65

Program Intrumentalization
3: Program statements.

1 int i;
2 int n;
3 int s;
4

5 s = 0;
6 n = _input_f0[_ioff_f0++];
7

8 if (n == 0)
9 return 0;

10

11 for (i=1; i < n; i++){
12 s = s + i;
13 }

4: Program statements relaxed.
1 //main scope
2 bool _rv1, _rv2, _rv3, _rv5;
3 bool _rv6[UNWIND],..., _rv8[UNWIND];
4 int _los; // loop1 offset
5
6 //test scope
7 bool _ev4;
8 int i,n,s;
9 _los=1;

10
11 if (_rv1) s = 0;
12 if (_rv2) n = _input_f0[_ioff_f0++];
13 if (_rv3 ? (n == 0) : _ev4)
14 return 0;
15
16 for (_rv5 ? (i = 1) : 1;
17 !_rv6[_los] || (i<n);
18 _rv8[_los] ? i++ : 1, _los++){
19 if (_rv7[_los]) s = s + i;
20 }

40 / 65

MaxSAT Encoder

• CFaults generates a weighted partial MaxSAT formula aiming to minimize the
necessary code alterations;

• The soft clauses are the relaxation variables used to instrument the C program,
expressed as

S =
V

c2C (rvc);
• We assign a hierarchical weight to each relaxation variable based on the height

of its sub-AST (abstract syntax tree);
• CFaults enumerates all MaxSAT solutions to identify all subset-minimal

diagnoses.

41 / 65

MaxSAT Encoder

• CFaults generates a weighted partial MaxSAT formula aiming to minimize the
necessary code alterations;

• The soft clauses are the relaxation variables used to instrument the C program,
expressed as

S =
V

c2C (rvc);

• We assign a hierarchical weight to each relaxation variable based on the height
of its sub-AST (abstract syntax tree);

• CFaults enumerates all MaxSAT solutions to identify all subset-minimal
diagnoses.

42 / 65

MaxSAT Encoder

• CFaults generates a weighted partial MaxSAT formula aiming to minimize the
necessary code alterations;

• The soft clauses are the relaxation variables used to instrument the C program,
expressed as

S =
V

c2C (rvc);
• We assign a hierarchical weight to each relaxation variable based on the height

of its sub-AST (abstract syntax tree);

• CFaults enumerates all MaxSAT solutions to identify all subset-minimal
diagnoses.

43 / 65

MaxSAT Encoder

• CFaults generates a weighted partial MaxSAT formula aiming to minimize the
necessary code alterations;

• The soft clauses are the relaxation variables used to instrument the C program,
expressed as

S =
V

c2C (rvc);
• We assign a hierarchical weight to each relaxation variable based on the height

of its sub-AST (abstract syntax tree);
• CFaults enumerates all MaxSAT solutions to identify all subset-minimal

diagnoses.

44 / 65

Experimental Results

45 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;
• C-Pack-IPAs is a set of introductory programming assignments. It consists of

ten programming assignments, comprising 486 faulty programs.
• All the experiments were conducted using:

- a memory limit of 32GB;
- a timeout of 3600 seconds (1 hour).

46 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;

• C-Pack-IPAs is a set of introductory programming assignments. It consists of
ten programming assignments, comprising 486 faulty programs.

• All the experiments were conducted using:

- a memory limit of 32GB;
- a timeout of 3600 seconds (1 hour).

47 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;
• C-Pack-IPAs is a set of introductory programming assignments. It consists of

ten programming assignments, comprising 486 faulty programs.

• All the experiments were conducted using:

- a memory limit of 32GB;
- a timeout of 3600 seconds (1 hour).

48 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;
• C-Pack-IPAs is a set of introductory programming assignments. It consists of

ten programming assignments, comprising 486 faulty programs.
• All the experiments were conducted using:

- a memory limit of 32GB;
- a timeout of 3600 seconds (1 hour).

49 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;
• C-Pack-IPAs is a set of introductory programming assignments. It consists of

ten programming assignments, comprising 486 faulty programs.
• All the experiments were conducted using:

- a memory limit of 32GB;

- a timeout of 3600 seconds (1 hour).

50 / 65

Experimental Setup

• CFaults has been evaluated using two benchmarks of C programs:
TCAS [Do et al., 2005] and C-Pack-IPAs [Orvalho et al., 2022];

• TCAS, from Siemens, comprises 41 versions of a program with introduced faults;
• C-Pack-IPAs is a set of introductory programming assignments. It consists of

ten programming assignments, comprising 486 faulty programs.
• All the experiments were conducted using:

- a memory limit of 32GB;
- a timeout of 3600 seconds (1 hour).

51 / 65

Experimental Setup

BugAssist and SNIPER:
• are either unavailable or no longer maintained, prototypes of their algorithms

were implemented;

• in this experiment, handle ANSI-C programs, as their algorithms are built on top
of CFaults’s unroller and instrumentalizer modules.

52 / 65

Experimental Setup

BugAssist and SNIPER:
• are either unavailable or no longer maintained, prototypes of their algorithms

were implemented;
• in this experiment, handle ANSI-C programs, as their algorithms are built on top

of CFaults’s unroller and instrumentalizer modules.

53 / 65

Results

Benchmark: TCAS
Valid

Diagnosis Memouts Timeouts

BugAssist 41 (100.0%) 0 (0.0%) 0 (0.0%)
SNIPER 7 (17.07%) 34 (82.93%) 0 (0.0%)
CFaults 41 (100.0%) 0 (0.0%) 0 (0.0%)

CFaults-Refined 41 (100.0%) 0 (0.0%) 0 (0.0%)

Table 4: BugAssist, SNIPER and CFaults fault localization results on TCAS.

54 / 65

Results

Benchmark: C-Pack-IPAs
Valid

Diagnosis Memouts Timeouts

BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)
CFaults 483 (99.38%) 1 (0.21%) 2 (0.41%)

CFaults-Refined 482 (99.18%) 1 (0.21%) 3 (0.62%)

Table 5: BugAssist, SNIPER and CFaults fault localization results on C-Pack-IPAs.

55 / 65

Diagnoses Enumerated

1. CFaults needs to
enumerate all MaxSAT
solutions due to the
weighted MaxSAT
formula;

2. SNIPER generates
significantly more
diagnoses.

56 / 65

Diagnoses Enumerated

1. CFaults needs to
enumerate all MaxSAT
solutions due to the
weighted MaxSAT
formula;

2. SNIPER generates
significantly more
diagnoses.

57 / 65

Takeaway Message

• We tackle the FL problem in C using Model-Based Diagnosis (MBD) with
multiple failing test cases, formulating it as a unified optimization problem;

• We only generate subset-minimal aggregated diagnosis to identify all faulty
program components;

• We present CFaults, a fault localization tool for ANSI-C programs, that:

• allows refinement of localized faults to pinpoint the bugs’ location more precisely;
• is fast and only produces subset-minimal diagnoses, unlike other SOTA FBFL tools.

58 / 65

Takeaway Message

• We tackle the FL problem in C using Model-Based Diagnosis (MBD) with
multiple failing test cases, formulating it as a unified optimization problem;

• We only generate subset-minimal aggregated diagnosis to identify all faulty
program components;

• We present CFaults, a fault localization tool for ANSI-C programs, that:

• allows refinement of localized faults to pinpoint the bugs’ location more precisely;
• is fast and only produces subset-minimal diagnoses, unlike other SOTA FBFL tools.

59 / 65

Takeaway Message

• We tackle the FL problem in C using Model-Based Diagnosis (MBD) with
multiple failing test cases, formulating it as a unified optimization problem;

• We only generate subset-minimal aggregated diagnosis to identify all faulty
program components;

• We present CFaults, a fault localization tool for ANSI-C programs, that:

• allows refinement of localized faults to pinpoint the bugs’ location more precisely;
• is fast and only produces subset-minimal diagnoses, unlike other SOTA FBFL tools.

60 / 65

Takeaway Message

• We tackle the FL problem in C using Model-Based Diagnosis (MBD) with
multiple failing test cases, formulating it as a unified optimization problem;

• We only generate subset-minimal aggregated diagnosis to identify all faulty
program components;

• We present CFaults, a fault localization tool for ANSI-C programs, that:
• allows refinement of localized faults to pinpoint the bugs’ location more precisely;

• is fast and only produces subset-minimal diagnoses, unlike other SOTA FBFL tools.

61 / 65

Takeaway Message

• We tackle the FL problem in C using Model-Based Diagnosis (MBD) with
multiple failing test cases, formulating it as a unified optimization problem;

• We only generate subset-minimal aggregated diagnosis to identify all faulty
program components;

• We present CFaults, a fault localization tool for ANSI-C programs, that:
• allows refinement of localized faults to pinpoint the bugs’ location more precisely;
• is fast and only produces subset-minimal diagnoses, unlike other SOTA FBFL tools.

62 / 65

References

Reiter, Raymond (1987)
A Theory of Diagnosis from First Principles.
Artif. Intell. 1987.
Do, Hyunsook and Elbaum, Sebastian G. and Rothermel, Gregg (2005)
Supporting Controlled Experimentation with Testing Techniques: An Infrastructure and its Potential
Impact.
Empir. Softw. Eng. 2005.
Manu Jose and Rupak Majumdar (2011)
Cause clue clauses: error localization using maximum satisfiability.
PLDI 2011.
Lamraoui, Si-Mohamed and Nakajima, Shin (2016)
A Formula-based Approach for Automatic Fault Localization of Multi-fault Programs.
J. Inf. Process. 24(1), 88 – 98.

63 / 65

References
Ignatiev, Alexey and Morgado, António and Weissenbacher, Georg and Marques-Silva, João (2019)
Model-Based Diagnosis with Multiple Observations.
IJCAI 2019.
Orvalho, P. and Janota, M. and Manquinho, V. (2022)
C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming Assignments.
arXiv:2206.08768.
The Guardian - Year 2000 Problem
https://www.theguardian.com/commentisfree/2019/dec/31/millennium-bug-face-fears-y2k-it-
systems
The Guardian 2019.
The Sun UK - Crowdstrike Meltdown
https://www.thesun.co.uk/tech/27223882/microsoft-crowdstrike-meltdown-trillions-cost-world-
economy.
The Sun UK.

64 / 65

CFaults
Thank you!

https://github.com/pmorvalho/cfaults
65 / 65

https://github.com/pmorvalho/cfaults

	Motivation
	Formula-Based Fault Localization
	Model-Based Diagnosis
	Model-Based Diagnosis with Multiple Test Cases
	CFaults
	Experimental Results
	Appendix

