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Research Overview

• Program Synthesis:
• Encodings for Enumeration-Based Program Synthesis. CP 2019;
• SQUARES: A SQL Synthesizer Using Query Reverse Engineering. VLDB 2020;

• Maximum Satisfiability (MaxSAT):
• UpMax: User partitioning for MaxSAT. SAT 2023;
• AlloyMax: Bringing maximum satisfaction to relational specifications.

ESEC/FSE 2021. [ACM SIGSOFT Distinguished Paper Award];
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Automated Program Repair (APR)
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APR - Motivation

• The increasing demand for programming education has given rise to all kinds of
online evaluations focused on introductory programming assignments (IPAs):

• MIT’s MOOC, Introduction to CS, reached 1.2 M enrollments in 2018;

• In 2020, Stanford’s CS MOOC had more than 10K students.
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Automated Program Repair (APR)

Given a buggy program Po and a set of input-output examples T (test suite).

The goal of Automated Program Repair is to find a program Pf by semantically change
a subset S1 of Po ’s statements (S1 ✓ Po) for another set of statements S2, s.t.,

Pf = ((Po \ S1) [ S2)

and

8{t i
in, t i

out} 2 T : Pf (t i
in) = t i

out
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ECAI 23 - Graph Neural Networks For Mapping
Variables Between Programs
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Variable Mapping - Motivation

• Comparing two programs is highly challenging;

• A relation between two programs’ sets of variables is required;

• Mapping variables between two programs is useful for a variety of program
related tasks, such as, program equivalence, program repair, etc.
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Variable Mapping - Motivation

1: Function that finds and returns the maximum
number among n1, n2 and n3.

1 int max(int n1, int n2, int n3)
2 {
3 int m = n1 > n2 ? n1 : n2;
4 return n3 > m ? n3 : m;
5 }

2: Function that finds and returns the maximum
number among x, y and z.

1 int max(int x, int y, int z){
2 int m = 0;
3 m = x > m ? x : m;
4 m = y > m ? y : m;
5 return z > m ? z : m;
6 }
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Contribution

• A graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

• Our program representation is agnostic to the names of the variables;

• Map the variables between a correct program and a faulty one using Graph
Neural Networks (GNNs).
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Program Representation

7: An expression that uses int
variables a and b, previously
declared in the program.

1 {
2 // a and b are ints
3 a = a - b;
4 }

block

assign

ID a expr

ID a op � ID b

(a) Part of the AST representation.
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Graph Neural Networks (GNNs)

• We use a Relational Graph Convolutional Neural Network (RGCN);

• We perform message passing between the nodes of our representations, so that
information can be passed between the local constituents;

• After several message passing rounds, we obtain numerical vectors corresponding
to each variable node in the two programs;

• We compute scalar products between each possible combination of variable
nodes in the two programs, followed by a softmax function.
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Data Augmentation

• We use C-Pack-IPAs [Orvalho et al., 2022], a set of 10 introductory
programming assignments, comprising 486 faulty programs;

• Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultIPAs [Orvalho et al., 2022] to generate a dataset
of pairs of correct/incorrect programs:

• MultIPAs can perform six syntactic program mutations;

• MultIPAs can introduce three kinds of bugs: wrong comparison operator (WCO),
variable misuse (VM), and missing expression (ME).
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Variable Mapping - Results

Buggy Programs
(Total = 186366)

Correct Mappings 179470 (96.49%)
Table 1: Validation Performance after 20 training epochs.

Evaluation Metric Buggy Programs
# Correct Mappings 82.77%
Avg Overlap Coefficient 95.05%

Table 2: Test Performance.
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FM24 - CFaults: Model-Based Diagnosis for
Fault Localization in C with Multiple Test Cases
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Fault Localization - Motivation

• Debugging is one of the most time-consuming and expensive tasks in software
development.

• In 2024, the estimated global cost of Crowdstrike’s error that hit Microsoft systems,
is 5.4 Billion US$ [The Guardian UK, 2024].
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Fault Localization

• Given a buggy program, fault localization (FL) involves identifying locations in the
program that could cause a faulty behaviour (bug).

Programmer Fault Localization Bug Report

20 / 43



Formula-Based Fault Localization (FBFL)
• FBFL methods encode the localization problem into several optimization problems

to identify a minimal set of bugs (diagnoses).

Programmer

Formula-Based 
Fault Localization

Bug Report

Test 
Suite

N Diagnoses

2.

1.

N.

K Test Cases

Test 1

Test 2

Test K

3.
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Formula-Based Fault Localization (FBFL)

Current Limitations
FBFL tools especially for programs with multiple faults:

• do not ensure a minimal diagnosis across all failing tests (e.g., BugAssist);
• may produce an overwhelming number of redundant sets of diagnoses (e.g.,

SNIPER).
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Contribution

• We formulate the FL problem as a single optimization problem;

• We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called CFaults.
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Partial Maximum Satisfiability (MaxSAT)

Hard: h1 : (v1 _ v2) h2 : (¬v2 _ v3) h3 : (¬v1 _ ¬v3) h4 : (v4 _ v5)
h5 : (¬v5 _ v6) h6 : (¬v4 _ ¬v6) h7 : (¬v3 _ ¬v6)

Soft: s1 : (¬v1) s2 : (¬v3) s3 : (¬v4) s4 : (¬v6)

Figure 1: Example of a partial MaxSAT formula.
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Model-Based Diagnosis

• A system description P is composed of a set of components C = {c1, . . . , cn}.

• Each component in C can be declared healthy or unhealthy.
• For each component c 2 C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.
• P is described by a CNF formula, where Fc denotes the encoding of component c:

P ,
^

c2C
(¬h(c) _ Fc) (1)
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Model-Based Diagnosis

• Observations represent deviations from the expected system behaviour.

• An observation, denoted as o, can be encoded in CNF as a set of unit clauses.
• In our work, the failing test cases represent the set of observations.
• A system P is considered faulty if there exists an inconsistency with a given

observation o when all components are declared healthy:

P ^ o ^

^
c2C

h(c) ✏ ? (2)
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Model-Based Diagnosis

• The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

• For a given MBD problem hP, C, oi, a set of system components � ✓ C is a
diagnosis iff:

P ^ o ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (3)

• A diagnosis � is:

• minimal iff no subset of �, �0 ( �, is a diagnosis;
• � is of minimal cardinality if there is no other diagnosis �00

✓ C with |�00
| < |�|;

• is redundant if it is not subset-minimal [Ignatiev et al., 2019].
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Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
• The set of clauses that encode P represents the set of hard clauses;

• The soft clauses consists of unit clauses that aim to maximize the set of healthy
components, i.e.,:

V
c2C h(c);

• This encoding enables enumerating subset minimal diagnoses, considering a
single observation;
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Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

• We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

• Given m observations, O = {o1, . . . , om}, a distinct replica of the system, denoted as
Pi , is required for each observation oi ;

• The hard clauses, �h, in our MaxSAT formulation correspond to:
�h =

V
oi2O (Pi ^ oi);

• The soft clauses are formulated as:
�s =

V
c2C h(c).
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Model-Based Diagnosis with Multiple Test Cases

• Given a MaxSAT solution, the set of unhealthy components (h(c) = 0),
corresponds to a subset-minimal aggregated diagnosis.

• This diagnosis makes the system consistent with all observations, as follows:
^

oi2O
(Pi ^ oi) ^

^
c2C\�

h(c) ^
^

c2�
¬h(c) 2 ? (4)
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CFaults
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CFaults- Results

Benchmark: C-Pack-IPAs
Valid

Diagnosis Memouts Timeouts

BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)
CFaults 483 (99.38%) 1 (0.21%) 2 (0.41%)

Table 3: BugAssist, SNIPER and CFaults fault localization results on C-Pack-IPAs.
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Counterexample Guided APR Using
MaxSAT-based Fault Localization
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Motivation

12: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

LLMs for code (LLMCs)

• Granite and CodeGemma cannot
fix the buggy program within 90 secs;

• Even if we provide the assignment’s
description and IO tests.
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Program Sketches

15: Semantically incorrect program. Faults :{4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

16: Program sketch with holes.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10

11 return 0;
12 }
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Counterexample Guided Automated Repair
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Prompt Example
Fix all semantic bugs in the buggy program
below. Modify the code as little as possible.
Do not provide any explanation.

### Problem Description ###
Write a program that determines and
prints the largest of three integers
given by the user.

### Test Suite
#input:
6 2 1
#output:
6
// The other input-output tests

# Reference Implementation
(Do not copy this program) <c> #
```c
int main(){

// Reference Implementation
}
```

### Buggy Program <c> ###
```c
int main(){

// Buggy program from Listing 1
}
```

### Fixed Program <c> ###
```c
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LLM-Driven APR with CFaults

Prompt Configurations
LLMs De-TS De-TS-CE Sk_De-TS Sk_De-TS-CE

CodeGemma 597 (41.7%) 606 (42.3%) 682 (47.7%) 688 (48.1%)
CodeLlama 492 (34.4%) 500 (34.9%) 573 (40.0%) 561 (39.2%)

Gemma 496 (34.7%) 492 (34.4%) 532 (37.2%) 534 (37.3%)
Granite 626 (43.7%) 624 (43.6%) 691 (48.3%) 681 (47.6%)
Llama3 564 (39.4%) 590 (41.2%) 578 (40.4%) 591 (41.3%)

Phi3 494 (34.5%) 489 (34.2%) 547 (38.2%) 535 (37.4%)

Verifix 90 (6.3%)
Clara 495 (34.6%)

Table 4: The number of programs fixed by each LLM under various configurations. Mapping abbreviations
to configuration names: De - IPA Description, TS - Test Suite, CE - Counterexample, SK - Sketches.
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LLM-Driven APR with CFaults + VMs

Prompt configurations with access to Reference Implementations and Variable Mappings
LLMs Sk_De-TS Sk_De-TS-CE Sk_De-TS-CE-CPA-VM Sk_De-TS-CE-RI-VM

CodeGemma 682 (47.7%) 688 (48.1%) 782 (54.6%) 780 (54.5%)
CodeLlama 573 (40.0%) 561 (39.2%) 681 (47.6%) 677 (47.3%)

Gemma 532 (37.2%) 534 (37.3%) 756 (52.8%) 766 (53.5%)
Granite 691 (48.3%) 681 (47.6%) 901 (63.0%) 921 (64.4%)
Llama3 578 (40.4%) 591 (41.3%) 792 (55.3%) 720 (50.3%)

Phi3 547 (38.2%) 535 (37.4%) 691 (48.3%) 691 (48.3%)

Table 5: The number of programs fixed by each LLM under various configurations. Mapping
abbreviations to configuration names: CPA - Closest Program using AASTs, De - IPA Description,
RI - Reference Implementation, SK - Sketches, TS - Test Suite, VM - Variable Mapping.
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How Can I Collaborate with You?

I have gained extensive experience in:
• symbolic methods including:

• Constraint Solving (MaxSAT, SAT, SMT);
• Program Verification;
• Model-Based Diagnosis;
• Program Synthesis and Repair.

• developing software and experimental tools;
• hosting and running LLMs for chat-based procedures.
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Pedro Orvalho
Thank you!

https://pmorvalho.github.io
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