
Counterexample Guided Program Repair
Using Zero-Shot Learning and

MaxSAT-based Fault Localization
Pedro Orvalho 1 , Mikoláš Janota 2 and Vasco Manquinho 3

1Department of Computer Science, University of Oxford, Oxford, UK
2CIIRC, Czech Technical University in Prague, Czechia

3INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

OutSystems AI Reading Group

21 March 2025

Automated Program Repair (APR)

Given a buggy program Po and a set of input-output examples T (test suite).

The goal of Automated Program Repair is to find a program Pf by semantically change
a subset S1 of Po ’s statements (S1 ✓ Po) for another set of statements S2, s.t.,

Pf = ((Po \ S1) [S2)

and

8(t i
in, t i

out) 2 T : Pf (t i
in) = t i

out

2 / 24

Automated Program Repair (APR)

Given a buggy program Po and a set of input-output examples T (test suite).

The goal of Automated Program Repair is to find a program Pf by semantically change
a subset S1 of Po ’s statements (S1 ✓ Po) for another set of statements S2, s.t.,

Pf = ((Po \ S1) [S2)

and

8(t i
in, t i

out) 2 T : Pf (t i
in) = t i

out

2 / 24

Motivation

1: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

Symbolic-based APR Tools:

• APR tools based on Automated
Reasoning, such as Clara or
Verifix, cannot fix this program
within 90s;

• Clara takes too long to compute a
‘minimal’ repair;

• Verifix returns a compilation error.

3 / 24

Motivation

2: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

Symbolic-based APR Tools:
• APR tools based on Automated

Reasoning, such as Clara or
Verifix, cannot fix this program
within 90s;

• Clara takes too long to compute a
‘minimal’ repair;

• Verifix returns a compilation error.

3 / 24

Motivation

3: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

Symbolic-based APR Tools:
• APR tools based on Automated

Reasoning, such as Clara or
Verifix, cannot fix this program
within 90s;

• Clara takes too long to compute a
‘minimal’ repair;

• Verifix returns a compilation error.

3 / 24

Motivation

4: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

Symbolic-based APR Tools:
• APR tools based on Automated

Reasoning, such as Clara or
Verifix, cannot fix this program
within 90s;

• Clara takes too long to compute a
‘minimal’ repair;

• Verifix returns a compilation error.

3 / 24

Motivation

5: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

LLMs for code (LLMCs)
• Granite and CodeGemma cannot

fix the buggy program within 90 secs;

• Even if we provide this assignment’s
description and IO tests.

• Suggesting a correct implementation,
both LLMs copy the correct
program, ignoring instructions
not to do so.

4 / 24

Motivation

6: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

LLMs for code (LLMCs)
• Granite and CodeGemma cannot

fix the buggy program within 90 secs;
• Even if we provide this assignment’s

description and IO tests.

• Suggesting a correct implementation,
both LLMs copy the correct
program, ignoring instructions
not to do so.

4 / 24

Motivation

7: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

LLMs for code (LLMCs)
• Granite and CodeGemma cannot

fix the buggy program within 90 secs;
• Even if we provide this assignment’s

description and IO tests.
• Suggesting a correct implementation,

both LLMs copy the correct
program, ignoring instructions
not to do so.

4 / 24

Motivation

8: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

• Symbolic approaches demand an
excessive amount of time to
produce an answer;

• LLMs, while fast, often produce
incorrect fixes.

5 / 24

Motivation

9: Semantically incorrect program. Faults: {4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

• Symbolic approaches demand an
excessive amount of time to
produce an answer;

• LLMs, while fast, often produce
incorrect fixes.

5 / 24

Program Sketches

10: Semantically incorrect program. Faults :{4,8}.

1 int main(){ //finds max of 3 nums
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 if (f < s && f >= t)
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 else if (t < f && t < s)
9 printf("%d",t);

10

11 return 0;
12 }

11: Program sketch with holes.

1 int main(){
2 int f,s,t;
3 scanf("%d%d%d",&f,&s,&t);
4 @ HOLE 1 @
5 printf("%d",f);
6 else if (s > f && s >= t)
7 printf("%d",s);
8 @ HOLE 2 @
9 printf("%d",t);

10

11 return 0;
12 }

6 / 24

Our Work

• Combines the strengths of Formal Methods (FM) and LLM-based approaches;

• Uses MaxSAT-based fault localization to rigorously identify buggy lines, which
can then be highlighted in the LLM prompt;

• For instance, instructing both LLMs to complete the previous sketch allows
them to fix the buggy program in a single interaction;

7 / 24

Our Work

• Combines the strengths of Formal Methods (FM) and LLM-based approaches;
• Uses MaxSAT-based fault localization to rigorously identify buggy lines, which

can then be highlighted in the LLM prompt;

• For instance, instructing both LLMs to complete the previous sketch allows
them to fix the buggy program in a single interaction;

7 / 24

Our Work

• Combines the strengths of Formal Methods (FM) and LLM-based approaches;
• Uses MaxSAT-based fault localization to rigorously identify buggy lines, which

can then be highlighted in the LLM prompt;
• For instance, instructing both LLMs to complete the previous sketch allows

them to fix the buggy program in a single interaction;

7 / 24

MaxSAT-Based Fault Localization

• FM24 - CFaults: Model-Based Diagnosis for Fault Localization in C with Multiple
Test Cases.

8 / 24

Fault Localization

• Given a buggy program, fault localization (FL) involves identifying locations in the
program that could cause a faulty behaviour (bug).

Programmer Fault Localization Bug Report

9 / 24

Formula-Based Fault Localization (FBFL)
• FBFL methods encode the localization problem into several optimization problems

to identify a minimal set of bugs (diagnoses).

Programmer

Formula-Based
Fault Localization

Bug Report

Test
Suite

N Diagnoses

2.

1.

N.

K Test Cases

Test 1

Test 2

Test K

3.

10 / 24

Fault Localization

• We formulate the FL problem as a single optimization problem;

• We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called
CFaults [Orvalho et al., 2024].

11 / 24

Fault Localization

• We formulate the FL problem as a single optimization problem;

• We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called
CFaults [Orvalho et al., 2024].

11 / 24

Fault Localization

• We formulate the FL problem as a single optimization problem;

• We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987, Ignatiev et al., 2019], integrating all failing test cases
simultaneously;

• We implement this MBD approach in a publicly available tool called
CFaults [Orvalho et al., 2024].

11 / 24

CFaults

Program P

Test
Suite

Localized
Faults

CFaults

t1 = {i1 , o1}

t2 = {i2 , o2}

tn = {in , on}

Unroller Instrumentalizer CBMC

MaxSAT
Encoder

Oracle
(MaxSAT Solver)

Refinement
Step

Pu Pi

CNF(Pi)

WCNF(Pi)1st iteration

12 / 24

Counterexample Guided Program
Repair

• AAAI 2025 - Counterexample Guided APR Using MaxSAT-based Fault Localization.

13 / 24

Counterexample Guided Automated Repair

Fault
Localizer

Prompt
Generator

Specs + FL

Code
Generator
(LLMs)

Prompt

Checker

Feedback + Counterexample

Candidate Program

Spec.
+

Buggy
Program

Fixed
Program

14 / 24

Prompt Example without Fault Localization
Fix all semantic bugs in the buggy program
below. Modify the code as little as possible.
Do not provide any explanation.

Problem Description
Write a program that determines and
prints the largest of three integers
given by the user.

Test Suite
#input:
6 2 1
#output:
6
// The other input-output tests

Reference Implementation
(Do not copy this program) <c> #
```c
int main(){
// Reference Implementation

}
```

Buggy Program <c>
```c
int main(){
// Buggy program from Listing 1

}
```

Fixed Program <c>
```c

15 / 24



Prompt with Fault Localization (FIXME)
Fix all buggy lines with '/* FIXME */'
comments in the buggy program below.
Modify the code as little as possible.
Do not provide any explanation.

### Problem Description ###
Write a program that determines and
prints the largest of three integers
given by the user.

### Test Suite
#input:
6 2 1
#output:
6
// The other input-output tests

# Reference Implementation
(Do not copy this program) <c> #
```c
int main(){
// Reference Implementation

}
```

### Buggy Program <c> ###
```c
int main(){
// Buggy program from Listing 1

}
```

### Fixed Program <c> ###
```c

16 / 24

Prompt with Fault Localization (Sketches)
Complete all the '@ HOLES N @' in the
incomplete program below.
Modify the code as little as possible.
Do not provide any explanation.

Problem Description
Write a program that determines and
prints the largest of three integers
given by the user.

Test Suite
#input:
6 2 1
#output:
6
// The other input-output tests

Reference Implementation
(Do not copy this program) <c> #
```c
int main(){
// Reference Implementation

}
```

Incomplete Program <c>

```c
int main(){
// Buggy program from Listing 1

}
```

Complete Program <c>
```c

17 / 24



Experimental Results

18 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.

• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.

• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;

• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;

• Meta’s CodeLlama.
• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:

• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:
• Google’s Gemma;

• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:
• Google’s Gemma;
• Meta’s Llama3;

• Microsoft’s Phi3.
• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:
• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



Experimental Setup

• Evaluation Benchmark: C-Pack-IPAs, a set of twenty-five introductory
programming assignments, comprising 1431 faulty programs;

• Large Language Models (LLMs): We evaluated six different LLMs.
• Three of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:

• IBM’s Granite;
• Google’s CodeGemma;
• Meta’s CodeLlama.

• The other three models are general-purpose LLMs:
• Google’s Gemma;
• Meta’s Llama3;
• Microsoft’s Phi3.

• Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

19 / 24



LLM-Driven APR with CFaults

LLMs De-TS De-TS-CE FIXME_De-TS FIXME_De-TS-CE Sk_De-TS Sk_De-TS-CE Portfolio
(All Configurations)

CodeGemma 597 (41.7%) 606 (42.3%) 592 (41.4%) 601 (42.0%) 682 (47.7%) 688 (48.1%) 823 (57.5%)
CodeLlama 492 (34.4%) 500 (34.9%) 481 (33.6%) 463 (32.4%) 573 (40.0%) 561 (39.2%) 712 (49.8%)

Gemma 496 (34.7%) 492 (34.4%) 446 (31.2%) 444 (31.0%) 532 (37.2%) 534 (37.3%) 670 (46.8%)
Granite 626 (43.7%) 624 (43.6%) 566 (39.6%) 583 (40.7%) 691 (48.3%) 681 (47.6%) 846 (59.1%)
Llama3 564 (39.4%) 590 (41.2%) 535 (37.4%) 557 (38.9%) 578 (40.4%) 591 (41.3%) 851 (59.5%)

Phi3 494 (34.5%) 489 (34.2%) 460 (32.1%) 474 (33.1%) 547 (38.2%) 535 (37.4%) 621 (43.4%)
Portfolio

(All LLMs) 842 (58.8%) 846 (59.1%) 796 (55.6%) 820 (57.3%) 900 (62.9%) 907 (63.4%) 1013 (70.8%)

Verifix 90 (6.3%)
Clara 495 (34.6%)

Table 1: The number of programs fixed by each LLM under various configurations. Mapping
abbreviations to configuration names: De - IPA Description, TS - Test Suite, CE - Counterexample,
FIXME - FIXME Comments, SK - Sketches.

20 / 24



Discussion

• Clara repairs 495 programs (34.6%);

• Verifix repairs only 91 programs (6.3%);
• All six LLMs using different prompt configurations repair more programs than

traditional APR tools;
• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to

repair more programs;
• Including a reference implementation allows for more repaired programs but

with less efficient fixes (see our paper);
• Our CEGIS approach significantly improves the accuracy of LLM-driven APR

across various configurations;

21 / 24



Discussion

• Clara repairs 495 programs (34.6%);
• Verifix repairs only 91 programs (6.3%);

• All six LLMs using different prompt configurations repair more programs than
traditional APR tools;

• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to
repair more programs;

• Including a reference implementation allows for more repaired programs but
with less efficient fixes (see our paper);

• Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations;

21 / 24



Discussion

• Clara repairs 495 programs (34.6%);
• Verifix repairs only 91 programs (6.3%);
• All six LLMs using different prompt configurations repair more programs than

traditional APR tools;

• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to
repair more programs;

• Including a reference implementation allows for more repaired programs but
with less efficient fixes (see our paper);

• Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations;

21 / 24



Discussion

• Clara repairs 495 programs (34.6%);
• Verifix repairs only 91 programs (6.3%);
• All six LLMs using different prompt configurations repair more programs than

traditional APR tools;
• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to

repair more programs;

• Including a reference implementation allows for more repaired programs but
with less efficient fixes (see our paper);

• Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations;

21 / 24



Discussion

• Clara repairs 495 programs (34.6%);
• Verifix repairs only 91 programs (6.3%);
• All six LLMs using different prompt configurations repair more programs than

traditional APR tools;
• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to

repair more programs;
• Including a reference implementation allows for more repaired programs but

with less efficient fixes (see our paper);

• Our CEGIS approach significantly improves the accuracy of LLM-driven APR
across various configurations;

21 / 24



Discussion

• Clara repairs 495 programs (34.6%);
• Verifix repairs only 91 programs (6.3%);
• All six LLMs using different prompt configurations repair more programs than

traditional APR tools;
• Incorporating FL-based Sketches (or FIXME annotations) allows LLMs to

repair more programs;
• Including a reference implementation allows for more repaired programs but

with less efficient fixes (see our paper);
• Our CEGIS approach significantly improves the accuracy of LLM-driven APR

across various configurations;

21 / 24



Takeaway Message

• We tackle the APR problem using an LLM-Driven Counterexample Guided
Inductive Synthesis (CEGIS) approach [Solar-Lezama et al., 2006];

• We employ MaxSAT-based Fault Localization to guide and minimize LLMs’
patches to incorrect programs by feeding them bug-free program sketches;

• With our approach all six evaluated LLMs fix more programs and produce
smaller patches than other configurations and symbolic tools;

• Our code is available on GitHub and on Zenodo.

22 / 24



Takeaway Message

• We tackle the APR problem using an LLM-Driven Counterexample Guided
Inductive Synthesis (CEGIS) approach [Solar-Lezama et al., 2006];

• We employ MaxSAT-based Fault Localization to guide and minimize LLMs’
patches to incorrect programs by feeding them bug-free program sketches;

• With our approach all six evaluated LLMs fix more programs and produce
smaller patches than other configurations and symbolic tools;

• Our code is available on GitHub and on Zenodo.

22 / 24



Takeaway Message

• We tackle the APR problem using an LLM-Driven Counterexample Guided
Inductive Synthesis (CEGIS) approach [Solar-Lezama et al., 2006];

• We employ MaxSAT-based Fault Localization to guide and minimize LLMs’
patches to incorrect programs by feeding them bug-free program sketches;

• With our approach all six evaluated LLMs fix more programs and produce
smaller patches than other configurations and symbolic tools;

• Our code is available on GitHub and on Zenodo.

22 / 24



Takeaway Message

• We tackle the APR problem using an LLM-Driven Counterexample Guided
Inductive Synthesis (CEGIS) approach [Solar-Lezama et al., 2006];

• We employ MaxSAT-based Fault Localization to guide and minimize LLMs’
patches to incorrect programs by feeding them bug-free program sketches;

• With our approach all six evaluated LLMs fix more programs and produce
smaller patches than other configurations and symbolic tools;

• Our code is available on GitHub and on Zenodo.

22 / 24



Thank you!

https://cs.ox.ac.uk/people/pedro.orvalho

23 / 24

https://cs.ox.ac.uk/people/pedro.orvalho


References
Ahmed, Umair Z and Fan, Zhiyu and Yi, Jooyong and Al-Bataineh, Omar I and Roychoudhury, Abhik
(2022)
Verifix: Verified repair of programming assignments.
TOSEM 22 12(3), 45 – 678.
Gulwani, Sumit and Radiček, Ivan and Zuleger, Florian (2018)
Automated clustering and program repair for introductory programming assignments.
PLDI 18 52(4), 465 – 480.
Armando Solar-Lezama and Liviu Tancau and Rastislav Bodík and Sanjit A. Seshia and Vijay A.
Saraswat (2018)
Combinatorial sketching for finite programs.
ASPLOS 2006.
Reiter, Raymond (1987)
A Theory of Diagnosis from First Principles.
Artif. Intell. 1987.

24 / 24



References

Ignatiev, Alexey and Morgado, António and Weissenbacher, Georg and Marques-Silva, João (2019)
Model-Based Diagnosis with Multiple Observations.
IJCAI 2019.
P. Orvalho and M. Janota and V. Manquinho (2024)
CFaults: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
Formal Methods (FM) 2024.
P. Orvalho and M. Janota and V. Manquinho (2024)
C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming Assignments.
Automated Program Repair (APR) 2024.
P. Orvalho and M. Janota and V. Manquinho (2025)
Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based Fault
Localization.
AAAI 2025.

24 / 24


	Automated Program Repair
	Motivation
	Our Work
	Fault Localization
	Formula-Based Fault Localization

	LLM-Driven Automated Program Repair Using Bug-Free Sketches
	Counterexample Guided Automated Repair

	Experimental Results
	References
	Appendix
	Appendix
	InvAASTCluster
	Model-Based Diagnosis
	Model-Based Diagnosis with Multiple Test Cases
	CFaults
	Experimental Results



