MENTOR: Automated Feedback for
Introductory Programming Exercises

Pedro Orvalho !
1Department of Computer Science, University of Oxford, Oxford, UK
Previously at:

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
CIIRC, Czech Technical University in Prague, Czechia

DI Seminars, FCT, Universidade Nova de Lisboa

Lisbon, 22 April 2025

CZECH INSTITUTE

UNIVERSITY OF OF INFORMATICS 3
TECN'CO @Inesc |d 3¢ ROBOTICS AND Fundacgao
LISBOA \ 2 4 CYBERNETICS para a Ciéncia
CTU IN PRAGUE —— ¢ a Tecnologia




Motivation

® The increasing demand for programming education has given rise to all kinds of
online evaluations focused on introductory programming assignments (IPAs):

2/50



Motivation

® The increasing demand for programming education has given rise to all kinds of
online evaluations focused on introductory programming assignments (IPAs):

* MIT's MOOC, Introduction to CS, reached 1.2 M enrollments in 2018;

2/50



Motivation

® The increasing demand for programming education has given rise to all kinds of
online evaluations focused on introductory programming assignments (IPAs):

* MIT's MOOC, Introduction to CS, reached 1.2 M enrollments in 2018;

® |n 2020, Stanford’'s CS MOOC had more than 10K students.

2/50



Motivation

® |n these courses it is a challenge to provide personalized feedback to students.

3/50



Motivation

® |n these courses it is a challenge to provide personalized feedback to students.

® Providing feedback in IPAS requires substantial time and effort by faculty.

3/50



Automated Program Repair

Example (A program that finds the maximum number among three numbers.)

int max_three(int nl, int n2, int n3){

1

2 int max = O;

° sl > ) Table 1: Test-suite with three tests (t1, t2, and t3).
4 max = nl;

> i Input

¢ ke (5 > e numl | num2 | num3 L
7 ) max = n2; 1 1 5 3 3

8

9 if (n3 > max){ t2 -1 -2 -3 R

10 max = n3; t3 1 2 1 2

11 }

12 return max;

4/50



Automated Program Repair

Example (A program that finds the maximum number among three numbers.)

int max_three(int nl, int n2, int n3){

1

2 int max = O;

° sl > ) Table 1: Test-suite with three tests (t1, t2, and t3).
4 max = nl;

> i Input

¢ ke (5 > e numl | num2 | num3 L
7 ) max = n2; 1 1 5 3 3

8

9 if (n3 > max){ t2 =l -2 -3 -1

10 max = n3; t3 1 2 1 2

11 }

12 return max;

4/50



Automated Program Repair (APR)

Given a buggy program P, and a set of input-output examples T (test suite).

5/50



Automated Program Repair (APR)

Given a buggy program P, and a set of input-output examples T (test suite).

The goal of Automated Program Repair is to find a program Pr by semantically change
a subset S; of P,’s statements (S; C P,) for another set of statements Sy, s.t.,

Pr = ((Po \ 51) @] 52)
and

\v/(tlin’ t(éut) €T : ’Df(t;'n) = t(éut

5/50



Problem Description

Limitations of Past Approaches

Semantic APR techniques (e.g. CLARA, VERIFIX), require:

6/50



Problem Description

Limitations of Past Approaches

Semantic APR techniques (e.g. CLARA, VERIFIX), require:

1. Perfect match between the control flow graphs of two programs;

6/50



Problem Description

Limitations of Past Approaches

Semantic APR techniques (e.g. CLARA, VERIFIX), require:

1. Perfect match between the control flow graphs of two programs;
2. Bijective relation between the sets of variables of both programs.

6/50



MENTOR

Correct
Submissions

1[5

Incorrect
Submission

Test
Suite

MENTOR

Program
Clustering

Fault
Localization

Faulty
Statements

K Clusters'
Representatives

Program
Fixer

K Variable
Mappings

v

FAILED

Variable
Aligner

. PASSED
Decider | —

Submission
Repaired

Feedback

-
— [

7/50



MENTOR

Correct
Submissions

M E NTO R K Clusters'

Representatives

Program Variable
Clustering Aligner
F= ) \ Feedback
. K Variable | _~ —
Incorrect Mappings_~ ARG
Submission /
— >
<>
» Submission
Test Repaired
Suite Fault Program N . PASSED ==
L . . Decider | > [
—o Localization Faulty Fixer
—ao ) Statements FAILED
-0 R

8/50



Variable Mapping

e ECAI 23 - Graph Neural Networks For Mapping Variables Between Programs;

e ESEC/FSE 2022 - MultlPAs: Applying Program Transformations to Introductory
Programming Assignments for Data Augmentation;

e AITP 22 - Project Proposal: Learning Variable Mappings to Repair Programs.

9/50



Variable Mapping - Motivation

e Comparing two programs is highly challenging;

10/50



Variable Mapping - Motivation

e Comparing two programs is highly challenging;

® A relation between two programs’ sets of variables is required,;

10/50



Variable Mapping - Motivation

e Comparing two programs is highly challenging;
® A relation between two programs’ sets of variables is required,;

® Mapping variables between two programs is useful for a variety of program
related tasks, such as, program equivalence, program repair, etc.

10/50



Variable Mapping - Motivation

1: Function that finds and returns the maximum
number among n1, n2 and n3.

1 int max(int nl, int n2, int n3)

2 o

3 int m = nl1 > n2 7?7 nl : n2;
4 return n3 > m ? n3 : m;
5}

2: Function that finds and returns the maximum

number among x, y and z.

1 int max(int x, int y, int z){
2 int m = O;

3 m=x>m?7YX : m;

4 m=y>m?7y : m;

5 return z >m 7 z : m;
6

11/50



Variable Mapping - Motivation

4: Function that finds and returns the maximum
number among x, y and z.

3: Function that finds and returns the maximum
number among nl, n2 and n3.

1 int max(int nl, int n2, int n3)

2 o

3 int m = nl1 > n2 ? nl : n2;

4
4 return n3 > m ? n3 : m;

5
5

6 ¥
Variable Mapping: {m: m; nl: x; n2 : y; n3: z}.

int m = 0;
m=x>m?7YXxX : m;

m=y>m?y :m;
return z > m 7 z

1 int max(int x, int y, int z){

m;

11/50



Motivation

6: Function that finds and returns the maximum

5: Function that finds and returns the maximum number among x, v and z.

number among nl, n2 and n3.

int max(int x, int y, int z
1 int max(int nl, int n2, int n3) ! ( y H

2 int m = O;
2 A oo
. 3 m=x>m?zx : m
3 int m = nl > n2 ? nl : n2; o o ’
4 m = m ©om;
4 return n3 > m 7 n3 : m; y y ’
5 return z >m 7 z : m;
5
6 I

Variable Mapping: {m: m; nl: x; n2 : y; n3: z}.

12/50



Contribution

® A graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

13/50



Contribution

® A graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

e Qur program representation is agnostic to the names of the variables;

13/50



Contribution

® A graph program representation that takes advantage of the structural
information of the abstract syntax trees (ASTs) of programs;

e Qur program representation is agnostic to the names of the variables;

® Map the variables between a correct program and a faulty one using Graph
Neural Networks (GNNSs).

13/50



Program Representation

7: An expression that uses int
variables a and b, previously
declared in the program.

1 o

2 // a and b are ints
3 a=a - b;

4 }

(a) Part of the AST representation.

14/50



Program Representation

Types of edges:

8: An expression that uses int AST -
variables a and b, previously
declared in the program.

Do Q

// a and b are ints

3 a=a-b;
4 ¥ VariabIeNode. G ‘

(b) Our program representation.

M

14/50



Program Representation

Types of edges:
9: An expression that uses int AST -
variables a and b, previously Read .

declared in the program. .
Write <->

1 {
// a and b are ints
3 a=a-b;

4 ¥ Variable Node .

M

(c) Our program representation.

14/50



Program Representation

10: An expression that uses int
variables a and b, previously
declared in the program.

1 {

2 // a and b are ints
3 a=a-b;

4}

Types of edges:
AST —
Read <->
Write <->

Sibling e

Variable Node .

(d) Our program representation.

14/50



Program Representation

Types of edges:
11: An expression that uses int AST -
variables a and b, previously Read .

declared in the program. )
Write <->

1 { Sibling R
2 // a and b are ints Chronological
3 a=a-b;

4} Variable Node .

(e) Our program representation.

14/50



Graph Neural Networks (GNNs)

® We perform message passing between the nodes of our representations;

15/50



Graph Neural Networks (GNNs)

® We perform message passing between the nodes of our representations;

® \We obtain vectors corresponding to each variable node in each program;

15/50



Graph Neural Networks (GNNs)

® We perform message passing between the nodes of our representations;
® \We obtain vectors corresponding to each variable node in each program;

® \We compute scalar products between each possible combination of variable
nodes in the two programs, followed by a softmax function.

15/50



Data Augmentation

® We use C-PACK-IPAS [Orvalho et al., 2024], a set of 10 introductory
programming assignments, comprising 486 faulty programs;

16 /50



Data Augmentation

® We use C-PACK-IPAS [Orvalho et al., 2024], a set of 10 introductory
programming assignments, comprising 486 faulty programs;

® Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultlPAs [Orvalho et al., 2022] to generate a dataset
of pairs of correct/incorrect programs:

16 /50



Data Augmentation

® We use C-PACK-IPAS [Orvalho et al., 2024], a set of 10 introductory
programming assignments, comprising 486 faulty programs;

® Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultlPAs [Orvalho et al., 2022] to generate a dataset
of pairs of correct/incorrect programs:

® MULTIPAS can perform six syntactic program mutations;

16 /50



Data Augmentation

® We use C-PACK-IPAS [Orvalho et al., 2024], a set of 10 introductory
programming assignments, comprising 486 faulty programs;

® Since we need to know the real variable mappings between programs to evaluate our
representation, we used MultlPAs [Orvalho et al., 2022] to generate a dataset
of pairs of correct/incorrect programs:

® MULTIPAS can perform six syntactic program mutations;

® MULTIPAS can introduce three kinds of bugs: wrong comparison operator (WCO),
variable misuse (VM), and missing expression (ME).

16 /50



Variable Mapping - Results

Buggy Programs
(Total = 186366)
Correct Mappings 179470 (96.49%)

Table 2: Validation Performance after 20 training epochs.

17/50



Variable Mapping - Results

Buggy Programs
(Total = 186366)
Correct Mappings 179470 (96.49%)

Table 2: Validation Performance after 20 training epochs.

Evaluation Metric Buggy Programs
# Correct Mappings 82.77%
Avg Overlap Coefficient 95.05%

Table 3: Test Performance.

17/50



MENTOR

Correct
Submissions

MENTOR

Program
Clustering

Incorrect
Submission

Test
Suite

Fault
Localization

Faulty
Statements

K Clusters'
Representatives

K Variable
Mappings

Program
Fixer

.

FAILED

Variable
Aligner

> . PASSED
- Decider } —>

Submission
Repaired

Feedback

-
— &

18/50



Fault Localization

® FM24 - CFauLTs: Model-Based Diagnosis for Fault Localization in C with Multiple
Test Cases.

19/50



Fault Localization - Motivation

® Debugging is one of the most time-consuming and expensive tasks in
software development.

20/50



Fault Localization - Motivation

® Debugging is one of the most time-consuming and expensive tasks in
software development.

® |n 2024, the estimated global cost of Crowdstrike's error that hit Microsoft systems,
is 5.4 Billion US$ [The Guardian UK, 2024].

20/50



Fault Localization

e Given a buggy program, fault localization (FL) involves identifying locations in the
program that could cause a faulty behaviour (bug).

O = =

Programmer Fault Localization Bug Report

21/50



Formula-Based Fault Localization (FBFL)

® FBFL methods encode the localization problem into several optimization problems
to identify a minimal set of bugs (diagnoses).

O

Programmer

K Test Cases

Test 2 A

Test K

Formula-Based
Fault Localization

i

N Diagnoses

1

Bug Report

22/50



Formula-Based Fault Localization (FBFL)

Limitations of Past Approaches

FBFL tools especially for programs with multiple faults:

23 /50



Formula-Based Fault Localization (FBFL)

Limitations of Past Approaches

FBFL tools especially for programs with multiple faults:

* do not ensure a minimal diagnosis across all failing tests (e.g., BUGASSIST);

23 /50



Formula-Based Fault Localization (FBFL)

Limitations of Past Approaches

FBFL tools especially for programs with multiple faults:

* do not ensure a minimal diagnosis across all failing tests (e.g., BUGASSIST);
® may produce an overwhelming number of redundant diagnoses (e.g., SNIPER).

23 /50



Contribution

® We formulate the FL problem as a single optimization problem;

24 /50



Contribution

® We formulate the FL problem as a single optimization problem;

® We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987], integrating all failing test cases simultaneously;

24 /50



Contribution

® We formulate the FL problem as a single optimization problem;

® We leverage MaxSAT and the theory of Model-Based Diagnosis
(MBD) [Reiter et al., 1987], integrating all failing test cases simultaneously;

® We implement this MBD approach in a publicly available tool called CFAULTS.

24 /50



Model-Based Diagnosis

® A system description P is composed of a set of components C = {ci,...,cp}.

25 /50



Model-Based Diagnosis

® A system description P is composed of a set of components C = {ci,...,cp}.

® Each component in C can be declared healthy or unhealthy.

25 /50



Model-Based Diagnosis

® A system description P is composed of a set of components C = {ci,...,cp}.
® Each component in C can be declared healthy or unhealthy.

® For each component ¢ € C, h(c) = 0 if c is unhealthy, otherwise, h(c) = 1.

25 /50



Model-Based Diagnosis

A system description P is composed of a set of components C = {ci,...,cp}.

Each component in C can be declared healthy or unhealthy.
For each component ¢ € C, h(c) = 0 if ¢ is unhealthy, otherwise, h(c) = 1.

‘P is described by a CNF formula, where F. denotes the encoding of component c:

PEN_(h(e) = Fo)

25 /50



Model-Based Diagnosis

e Observations represent deviations from the expected system behaviour.

26 /50



Model-Based Diagnosis

e Observations represent deviations from the expected system behaviour.

® An observation, denoted as o, can be encoded in CNF as a set of unit clauses.

26 /50



Model-Based Diagnosis

e Observations represent deviations from the expected system behaviour.
® An observation, denoted as o, can be encoded in CNF as a set of unit clauses.

® In our work, the failing test cases represent the set of observations.

26 /50



Model-Based Diagnosis

e Observations represent deviations from the expected system behaviour.

An observation, denoted as o, can be encoded in CNF as a set of unit clauses.

In our work, the failing test cases represent the set of observations.

A system P is considered faulty if there exists an inconsistency with a given
observation o when all components are declared healthy:

Pron N hle)F L

26 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

27 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

® For a given MBD problem (P,C, 0), a set of system components A C C is a

diagnosis iff:
73/\0/\/\ cea c)/\/\ceAﬁh(c)}f 1

27 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

® For a given MBD problem (P,C, 0), a set of system components A C C is a

diagnosis iff:
73/\0/\/\ cea c)/\/\ceAﬁh(c)}f 1

® A diagnosis A is:

27 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

® For a given MBD problem (P,C, 0), a set of system components A C C is a

diagnosis iff:
73/\0/\/\ cea c)/\/\ceAﬁh(c)}f 1

® A diagnosis A is:
® minimal iff no subset of A, A’ C A, is a diagnosis;

27 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

® For a given MBD problem (P,C, 0), a set of system components A C C is a

diagnosis iff:
73/\0/\/\ o 1) A/\CeAﬁh(c)}f 1
® A diagnosis A is:

® minimal iff no subset of A, A’ C A, is a diagnosis;
® A is of minimal cardinality if there is no other diagnosis A” C C with |A”] < |A];

27 /50



Model-Based Diagnosis

® The problem of model-based diagnosis (MBD) aims to identify a set of
components which, if declared unhealthy, restore consistency;

® For a given MBD problem (P,C, 0), a set of system components A C C is a

diagnosis iff:
73/\0/\/\ o 1) A/\CeAﬁh(c)}f 1

® A diagnosis A is:
® minimal iff no subset of A, A’ C A, is a diagnosis;
® A is of minimal cardinality if there is no other diagnosis A” C C with |A”] < |A];
® is redundant if it is not subset-minimal [Ignatiev et al., 2019].

27 /50



Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
® The set of clauses that encode P represents the set of hard clauses;

28 /50



Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
® The set of clauses that encode P represents the set of hard clauses;

® The soft clauses consists of unit clauses that aim to maximize the set of healthy
components, i.e.,:

/\CEC h(C);

28 /50



Model-Based Diagnosis

To encode the MBD problem with one observation with partial MaxSAT:
® The set of clauses that encode P represents the set of hard clauses;

® The soft clauses consists of unit clauses that aim to maximize the set of healthy
components, i.e.,:

/\CEC h(C);
® This encoding enables enumerating subset minimal diagnoses, considering a
single observation,;

28 /50



Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

29 /50



Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

® \We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

29 /50



Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

® \We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

e Given m observations, O = {o1,...,0n}, a distinct replica of the system, denoted as
‘P;, is required for each observation o;;

29 /50



Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

® \We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

e Given m observations, O = {o1,...,0n}, a distinct replica of the system, denoted as
‘P;, is required for each observation o;;

® The hard clauses, ¢p, in our MaxSAT formulation correspond to:
On = /\o;EO (Pl A Oi);

29 /50



Model-Based Diagnosis with Multiple Test Cases

We integrate all failing test cases in a single MaxSAT formula.

® \We generate only minimal diagnoses capable of identifying all faulty components
within the system, in our case, a C program;

e Given m observations, O = {o1,...,0n}, a distinct replica of the system, denoted as
‘P;, is required for each observation o;;

® The hard clauses, ¢p, in our MaxSAT formulation correspond to:
On = /\o;EO (Pl A Oi);

® The soft clauses are formulated as:

¢S = /\CGC h(C)

29 /50



Model-Based Diagnosis with Multiple Test Cases

® Given a MaxSAT solution, the set of unhealthy components (h(c) = 0),
corresponds to a subset-minimal aggregated diagnosis.

30/50



Model-Based Diagnosis with Multiple Test Cases

® Given a MaxSAT solution, the set of unhealthy components (h(c) = 0),
corresponds to a subset-minimal aggregated diagnosis.

® This diagnosis makes the system consistent with all observations, as follows:

/\meo (P; A o) A /\ C\A ) A /\CeA —h(c) ¥ L

30/50



CFaults

Program P
—

Test
Suite

ty={i;, 01}

t,={i,, 0)}

t,={i,, 0.}

> Unroller

Refinement
Step

1st iteration

CFaults

P;
» Instrumentalizer
Oracle WCNF( P;) : MaxSAT
P L
(MaxSAT Solver) Encoder

\
\

Localized

<>

Faults
i

31/50



CFaults

Program P

B

Test
Suite

ti =iy, 04}

t,={i,, 05}

t, =i, 0n}

CFaults
Pl/
Unroller -}———» Instrumentalizer
\“‘\) - v
3 s
o™ CNF(P,)
Refinement 1 teration | Oracle WCNF( P'),. MaxSAT
Step (MaxSAT Solver) . Encoder

Localized
Faults

(4



CFaults

CFaults
Program P
— " ‘ P _
i ! Unroller l> Instrumentalizer

Test Fﬂ\,\\w s i Localized

Suite o™ CNF(P,) i, Faults
t={i, 0} Refinement | I iteration Oracle WCNF(P,) MaxSAT

o « — -«

t={i;, 0} Step _ (MaxSAT Solver) . Encoder

ty={in, 0p}

31/50



CFaults

Program P

i

Test
Suite

ty={iy, 04}

t={i,, 05}

t,={i,, 05}

>

CFaults
; u : .
Unroller -—— 4 Instrumentalizer
e Fq\l\w s /////x'."
5{0‘9“"5///

Refinement \ I*iteration |
P
Step

Oracle
(MaxSAT Solver)

WCNF( P,)
«

CNF(P;) l

MaxSAT
Encoder

Localized
Faults

‘ <>

31/50



CFaults

CFaults
Program P
— : P, ‘: o P,
i Unroller ———— Instrumentalizer
Test ol ‘5///' Localized
Suite ™ CNF(P;) i, Faults
v —
] - i 7>
t={i, 0} Refinement | I1%iteration Oracle WCNF(P,) MaxSAT
) Lo PEiechi A
t={i;, 05} Step _ (MaxSAT Solver) . Encoder
\

t= ii". 0.}

31/50



CFaults

Program P

i

Test
Suite

ty={i;, 01}

t={i,, 05}

t= {‘in , 0n}

CFaults
P;
- Unroller —» Instrumentalizer :
v
V“u\weg‘f//
ot CNF(P;)
Refinement  I*iteration Oracle WCNF(P;) ‘
Step (MaxSAT Solver)

MaxSAT
Encoder

Localized
Faults

<>

31/50



CFaults - Results

Benchmark: C-Pack-I1PAs

'Vahd . Memouts Timeouts

Diagnosis
BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)

CFaults 483 (99.38%)  1(021%) 2 (0.41%)

Table 4: BuGcAssisT, SNIPER and CFAULTS fault localization results on C-PACK-IPAS.

32/50



MENTOR

Correct
Submissions

Incorrect
Submission

MENTOR

K Clusters'
Representatives

Variable
Aligner

Program
Clustering

K Variable
Mappings

rd

Program
Fixer

Fault
Localization

" Decider

A

Faulty

Statements; FAILED

PASSED
—>

Submission
Repaired

Feedback

-
— [

33/50



Program Repair

e AAAI 2025 - Counterexample Guided APR Using MaxSAT-based Fault Localization.

34/50



Motivation

12: Semantically incorrect program. Faults: {4,8}.

1 int mainQOQ{ //finds maz of 3 nums
2 int f,s,t;

3 scanf ("%d%d%d",&f ,&s,&t) ;
4 if (f < s && £ >= t)

5 printf("%d",f);

6 else if (s > f && s >= t)
7 printf("%d",s);

8 else if (t < f && t < s)
9 printf ("%d",t);

10

11 return O;

12}

35/50



Motivation

13: Semantically incorrect program. Faults: {4,8}.

1 int mainQOQ{ //finds maz of 3 nums
2 int f,s,t;

3 scanf ("%d%d%d",&f ,&s,&t) ;
4 if (f < s && £ >= t)

5 printf("%d",f);

6 else if (s > f && s >= t)
7 printf("%d",s);

8 else if (t < f & t < s)
9 printf ("%d",t);

10

11 return O;

12}

36 /50



Motivation

14: Semantically incorrect program. Faults: {4,8}.

1 int mainQOQ{ //finds maz of 3 nums
2 int f,s,t;

3 scanf ("%d%d%4" ,&f,&s,&t) ;

4 if (f < s && £ >= t)

5 printf("%d",f);

6 else if (s > f && s >= t)

7 printf("%d",s);

8 else if (t < f & t < 8)

9 printf ("%d",t);

11 return O;

LLMs for code (LLMCs)

® GRANITE and CODEGEMMA cannot
fix the buggy program within 90 secs;

36 /50



Motivation

15: Semantically incorrect program. Faults: {4,8}.

1 int mainQOQ{ //finds maz of 3 nums

2 int f,s,t;

3 scanf ("%d%d%d" ,&f,&s,&t) ; LLMs for code (LLMCs)

* i <s ’fffc f >= 1) ® GRANITE and CODEGEMMA cannot
Z elszrilfltié fdf’z;’s . 1) fix the buggy program within 90 secs;
7 printf("%d",s); ® Even if we provide the assignment’s

8 else if (t < f & t < s) description and 10 tests.

9 printf ("%d",t);

10

11 return O;

12}

36 /50



Program Sketches

16: Semantically incorrect program. Faults :{4,8}.  17: Program sketch with holes.

1 int mainQOQ{ //finds maz of 3 nums 1
2 int f,s,t; 2
3 scanf ("%d%d%d",&f ,&s,&t) ; 3
4 if (f < s && £ >= t) 4
5 printf("%d",f); 5
6 else if (s > f && s >= t) 6
7 printf("%d",s); 7
8 else if (t < f && t < s) 8
9 printf ("%d",t); 9
10 10
11 return O; 11
12} 12

int main(){

int f,s,t;

scanf ("%d%d%d",&f,&s,&t) ;

@ HOLE 1
printf ("%d",f);

else if (s > f && s >= t)
printf("%d",s);

@ HOLE 2
printf ("%d",t);

return 0O;

37/50



Counterexample Guided Automated Repair

Spec. Code

+ — Fau.lt Generator
Buggy Localizer (LLMs)

Program
Specs + FL
{ Prompt |Candidate Program
Prompt Fixed
Generator [ Checker ]—’ Program

Feedback + Counterexample

38/50



Prompt Example without Fault Localization

Fix all semantic bugs in the buggy program # Reference Implementation
below. Modify the code as little as possible.??? not copy this program) <c> #
Do not provide any explanation. ¢

int main(){
### Problem Description ### // Reference Implementation
Write a program that determines and
prints the largest of three integers
given by the user.

### Buggy Program <c> ###

### Test Suite c

#input: int main(){

621 // Buggy program from Listing 1
#output: r

6

// The other input-output tests
### Fixed Program <c> ###

C

39/50



Prompt with Fault Localization (Sketches)

# Reference Implementation
(Do not copy this program) <c> #

Complete all the '@ HOLES N @' in the
incomplete program below.
Modify the code as little as possible.

; - int main(){
Do not provide any explanation.

// Reference Implementation

### Problem Description ### %~\
Write a program that determines and
prints the largest of three integers ### Incomplete Program <c> ###

given by the user.

C

#it# Test Suite int main(){
#input: // Buggy program from Listing 1
6 21 }
#output: T
6
// The other input-output tests #f# Complete Program <c> ###
c

40 /50



Experimental Setup

e Evaluation Benchmark: C-PACK-IPAS, a set of twenty-five IPAS, comprising
1431 faulty programs;

41/50



Experimental Setup

e Evaluation Benchmark: C-PACK-IPAS, a set of twenty-five IPAS, comprising
1431 faulty programs;
¢ Large Language Models (LLMs): We evaluated six different LLMs.

41/50



Experimental Setup

e Evaluation Benchmark: C-PACK-IPAS, a set of twenty-five IPAS, comprising
1431 faulty programs;
¢ Large Language Models (LLMs): We evaluated six different LLMs.
® Three of these models are LLMC s, i.e., LLMS fine-tuned for coding tasks:

® |IBM's GRANITE;
® Google's CODEGEMMA;
® Meta's CODELLAMA.

41/50



Experimental Setup

e Evaluation Benchmark: C-PACK-IPAS, a set of twenty-five IPAS, comprising
1431 faulty programs;
¢ Large Language Models (LLMs): We evaluated six different LLMs.
® Three of these models are LLMC s, i.e., LLMS fine-tuned for coding tasks:
® |IBM's GRANITE;
® Google's CODEGEMMA;
® Meta's CODELLAMA.
® The other three models are general-purpose LLMs:
® Google's GEMMA,;
® Meta's LLAMA3;
® Microsoft's PHI3.

41/50



Experimental Setup

e Evaluation Benchmark: C-PACK-IPAS, a set of twenty-five IPAS, comprising
1431 faulty programs;
¢ Large Language Models (LLMs): We evaluated six different LLMs.
® Three of these models are LLMC s, i.e., LLMS fine-tuned for coding tasks:

® |IBM's GRANITE;
® Google's CODEGEMMA;
® Meta's CODELLAMA.

® The other three models are general-purpose LLMs:

® Google's GEMMA,;
® Meta's LLAMA3;
® Microsoft's PHI3.

® Experiments were conducted using a memory limit of 10GB, and a timeout of 90s.

41/50



LLM-Driven APR with CFaults

Prompt Configurations

LLMs

De-TS

De-TS-CE

Sk_De-TS

Sk_De-TS-CE

CodeGemma

Codellama
Gemma
Granite
Llama3

Phi3

597 (41.7%)
492 (34.4%)
496 (34.7%)
626 (43.7%)
564 (39.4%)
494 (34.5%)

606 (42.3%)
500 (34.9%)
492 (34.4%)
624 (43.6%)
590 (41.2%)
489 (34.2%)

682 (47.7%)
573 (40.0%)
532 (37.2%)
691 (48.3%)
578 (40.4%)
547 (38.2%)

688 (48.1%)
561 (39.2%)
534 (37.3%)
681 (47.6%)
591 (41.3%)
535 (37.4%)

Verifix
Clara

90 (6.3%)
495 (34.6%)

Table 5: The number of programs fixed by each LLM under various configurations. Mapping abbreviations
to configuration names: De - IPA Description, TS - Test Suite, CE - Counterexample, SK - Sketches.

42/50



LLM-Driven APR with CFaults 4+ VMs

Prompt configurations with access to Reference Implementations and Variable Mappings

LLMs Sk_De-TS Sk_De-TS-CE Sk_De-TS-CE-CPA-VM Sk_De-TS-CE-RI-VM
CodeGemma 682 (47.7%) 688 (48.1%) 782 (54.6%) 780 (54.5%)
CodeLlama 573 (40.0%) 561 (39.2%) 681 (47.6%) 677 (47.3%)
Gemma 532 (37.2%) 534 (37.3%) 756 (52.8%) 766 (53.5%)
Granite 691 (48.3%) 681 (47.6%) 901 (63.0%) 921 (64.4%)
Llama3 578 (40.4%) 501 (41.3%) 792 (55.3%) 720 (50.3%)
Phi3 547 (38.2%) 535 (37.4%) 691 (48.3%) 691 (48.3%)

Table 6: The number of programs fixed by each LLM under various configurations. Mapping
abbreviations to configuration names: CPA - Closest Program using AASTS, De - IPA Description,
Rl - Reference Implementation, SK - Sketches, TS - Test Suite, VM - Variable Mapping.

43 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024,

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024,

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024,

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® (C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024,

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024,

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Automated Program Repair

MultlPAs: Applying Program Transformations to Introductory Programming
Assignments for Data Augmentation. ESEC/FSE 2022;

® Graph Neural Networks For Mapping Variables Between Programs. ECAI 2023;
® C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming

Assignments. APR 2024;

GitSEED: A Git-backed Automated Assessment Tool for Software Engineering and
Programming Education. SIGCSE Virtual 2024,

CFAuLTS: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
FM 2024

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based
Fault Localization. AAAI 2025;

On Applying Invariant-Based Program Clustering to Introductory Programming
Assignments. [Under Review];

MENTOR: Providing Feedback for Introductory Programming Assignments with
Formula-Based Fault Localization and LLM-Driven Program Repair. [Under Review].

44 /50



Research Overview

® Program Synthesis:

® Encodings for Enumeration-Based Program Synthesis. CP 2019;
® SQUARES: A SQL Synthesizer Using Query Reverse Engineering. VLDB 2020;

45 /50



Research Overview

® Program Synthesis:

® Encodings for Enumeration-Based Program Synthesis. CP 2019;

® SQUARES: A SQL Synthesizer Using Query Reverse Engineering. VLDB 2020;
e Maximum Satisfiability (MaxSAT):

® UpMax: User partitioning for MaxSAT. SAT 2023;
® AlloyMax: Bringing maximum satisfaction to relational specifications.
ESEC/FSE 2021. ;

45 /50



GitSEED: Git-backed AAT for Software Engineering
and Programming Education

GitLab GIitSEED

3) Code Evaluation

1 Course Group i A — = g
..................... \ + | +
1) Code — 2) Alert

Submission

newﬂ)mission X's Test Prqgram
:.- — - Code Suite Analysis Tool(s)“
- ——=] ! AN
N Feedback/ =+
Student/Group X < - Evaluation Results Successful/Unsuccessful X's Feedback
(README) . /

4) Pushes the

k A
: feedback to X's repo L README

5) Get feedback o
form GitLab =

46 /50



Demo

47 /50



Obrigado!
Thank youl!



Pedro Orvalho

Thank youl!

https://pmorvalho.github.io


https://pmorvalho.github.io

References

B

Reiter, Raymond (1987)

A Theory of Diagnosis from First Principles.

Artif. Intell. 1987.

Do, Hyunsook and Elbaum, Sebastian G. and Rothermel, Gregg (2005)

Supporting Controlled Experimentation with Testing Techniques: An Infrastructure and its Potential
Impact.

Empir. Softw. Eng. 2005.
Jose, Manu and Majumdar, Rupak (2011)

Cause clue clauses: error localization using maximum satisfiability.
PLDI 2011.

Lamraoui, Si-Mohamed and Nakajima, Shin (2016)
A Formula-based Approach for Automatic Fault Localization of Multi-fault Programs.
J. Inf. Process. 24(1), 88 — 98.

50 /50



References

E

[

Ignatiev, Alexey and Morgado, Anténio and Weissenbacher, Georg and Marques-Silva, Jodo (2019)
Model-Based Diagnosis with Multiple Observations.
IJCAI 2019.

Orvalho, Pedro and Janota, Mikolas and Manquinho, Vasco (2024)
C-Pack of IPAs: A C90 Program Benchmark of Introductory Programming Assignments.
Automated Program Repair (APR) 2024.

The Guardian - Year 2000 Problem
www.theguardian.com/commentisfree/2019/dec/31/millennium-bug-face-fears-y2k-it-systems
The Guardian 2019.

The Guardian UK - Crowdstrike Meltdown
https://www.theguardian.com/technology/article/2024 /jul /24 / crowdstrike-outage-companies-cost.
The Guardian UK.

Ahmed, Umair Z and Fan, Zhiyu and Yi, Jooyong and Al-Bataineh, Omar | and Roychoudhury, Abhik
(2022)
Verifix: Verified repair of programming assignments.

TOSEM 22 12(3), 45 — 678.
50 /50



References

[§ Orvalho, Pedro and Janota, Mikol4 and Manquinho, Vasco (2022)

MultIPAs: Applying Program Transformations to Introductory Programming Assignments for Data
Augmentation.

ESEC/FSE 2022.

[§ Gulwani, Sumit and Radigek, Ivan and Zuleger, Florian (2018)
Automated clustering and program repair for introductory programming assignments.
PLDI 18 52(4), 465 — 480.

@ Orvalho, Pedro and Janota, Mikolas and Manquinho, Vasco (2024)
CFaults: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases.
Formal Methods (FM) 2024.

[§ Orvalho, Pedro and Janota, Mikolas and Manquinho, Vasco (2025)

Counterexample Guided Program Repair Using Zero-Shot Learning and MaxSAT-based Fault
Localization.

AAAI 2025.

50 /50



	Automated Program Repair
	Variable Mapping
	Variable Mapping - Motivation
	Program Representation
	Graph Neural Networks (GNNs)
	Variable Mapping - Results

	CFaults
	Fault Localization - Motivation
	Formula-Based Fault Localization
	Model-Based Diagnosis
	Model-Based Diagnosis with Multiple Test Cases
	CFaults
	CFaults- Results

	LLM-Driven Automated Program Repair Using Bug-Free Sketches
	Motivation
	Counterexample Guided Automated Repair
	Results

	Research Overview
	References
	Appendix
	Appendix
	Experimental Results

	InvAASTCluster
	GitSEED
	User Study
	Takeaway Message
	Automated Program Repair
	Related Work
	Problem Description


