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Motivation

• The software engineering community has embraced LLM-based tools, such as
GitHub Copilot and ChatGPT, to streamline code workflows, assist in
debugging, and even automate code completion.

• LLMs are widely used, and often blindly, with developers placing significant trust
in their capabilities [Oh et al., 2024].
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Motivation

However, this growing reliance on LLMs for coding tasks raises a fundamental question:

• To what extent do LLMs truly understand code and the underlying semantics
of programs?
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Motivation

• While recent LLMs can produce syntactically correct code, their responses might
just reflect pattern recognition over code syntax rather than genuine semantic
understanding [Petrov et al., 2025].

• If LLMs outputs are simply the result of statistical associations, then their
reliability in critical development tasks could be
overestimated [Gu et al., 2024].

• In other domains, such as mathematical competitions [Petrov et al., 2025], LLMs
tend to provide accurate predictions, but based on flawed reasoning.
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Motivation

1 def minPossibleSum(n:int, target:int)->int:
2 i = 1
3 arr = {1}
4 while len(arr) < n:
5 i += 1
6 if target - i not in arr:
7 arr.add(i)
8 return sum(arr)

Given two integers n and target,
function minPossibleSum finds the
sum of an array arr such that:
• len(arr) == n;
• all elements in arr are distinct

positive integers;
• @n−1

0 (i , j) : arr [i] + arr [j] ==
target;
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Motivation

1 def minPossibleSum(n:int, target:int)->int:
2 i = 1
3 arr = {1}
4 while len(arr) < n:
5 i += 1
6 if target - i not in arr:
7 arr.add(i)
8 return sum(arr)
9 assert minPossibleSum(n=1,target=1)==???

LLMs for code (LLMCs)
Now imagine we ask
Qwen2.5-Coder, to predict this
function’s output, and to explain its
reasoning.
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Qwen2.5-Coder’s Answer

Let's walk through the execution of the code
step-by-step to understand how the output
is produced.

The function `minPossibleSum` takes
two parameters: `n` and `target`.
In this case, `n = 1` and `target = 1`.

1. The variable `i` is initialized to 1.
2. A set `arr` is initialized with the
element 1.
3. The while loop condition checks if
the length of `arr` is less than `n`.
Since `n` is 1, the loop will run once.
4. Inside the loop, `i` is incremented to 2.

1 def minPossibleSum(n, target):
2 i = 1
3 arr = {1}
4 while len(arr) < n:
5 i += 1
6 if target - i not in arr:
7 arr.add(i)
8 return sum(arr)
9 assert minPossibleSum(n=1,target=1)==???
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Qwen2.5-Coder’s Answer

5. The condition `if target - i not in
arr` is checked. Here, `target - i`
is `1 - 2`, which equals `-1`.
Since `-1` is not in the set `arr`, the
condition is true.
6. The number 2 is added to the set `arr`.
7. The loop ends because the length of
`arr` is now `n`.
8. The function returns the sum of the
elements in `arr`, which is `1 + 2 = 3`.
Therefore, the assertion should be:
[ANSWER]assert minPossibleSum(1, 1) == 3[/ANSWER]

1 def minPossibleSum(n, target):
2 i = 1
3 arr = {1}
4 while len(arr) < n:
5 i += 1
6 if target - i not in arr:
7 arr.add(i)
8 return sum(arr)
9 assert minPossibleSum(n=1,target=1)==???
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Providing some feedback to Qwen2.5-Coder

Your previous output prediction was INCORRECT!
Try again. Complete the initial program
assertion containing the execution output
corresponding to the given input in [ANSWER]
and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]
Please complete the assertion and explain
your reasoning for your new prediction,
using no more than 1000 tokens.
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Qwen2.5-Coder’s Answer

There seems to be a
misunderstanding in the
explanation. Let's
re-evaluate the logic:
- Initially, `arr` contains {1}
- The loop runs while the length
of `arr` is less than `n`.
- In each iteration, `i` is
incremented, and if `target - i`
is not in `arr`, `i` is added
to `arr`.

Given `n = 1` and `target = 1`:
- Initially, `arr = 1`.
- The loop runs once because `len(arr) < n`
(1 < 1) is false.
- Therefore, the loop does not add any new
elements to `arr`. Thus, the final `arr`
remains `1`, and the sum is `1`.

Therefore, the correct assertion should be:
[ANSWER]assert minPossibleSum(1, 1) == 1[/ANSWER]
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There seems to be a
misunderstanding in the
explanation. Let's
re-evaluate the logic:
- Initially, `arr` contains {1}
- The loop runs while the length
of `arr` is less than `n`.
- In each iteration, `i` is
incremented, and if `target - i`
is not in `arr`, `i` is added
to `arr`.

Given `n = 1` and `target = 1`:
- Initially, `arr = 1`.
- The loop runs once because `len(arr) < n`
(1 < 1) is false.
- Therefore, the loop does not add any new
elements to `arr`. Thus, the final `arr`
remains `1`, and the sum is `1`.

Therefore, the correct assertion should be:
[ANSWER]assert minPossibleSum(1, 1) == 1[/ANSWER]

Our feedback was sufficient to guide Qwen2.5-Coder toward a logically sound
reasoning process and to correctly predict the output!
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LLMs’ Robustness

LLMs for code (LLMCs)
• When Qwen2.5-Coder and SemCoder

are presented with this semantically
equivalent function, both models fail to
provide the correct output;

• Both models also fail to construct
logically sound reasoning, even after five
rounds of interactive feedback.

1 def minPossibleSum(n, target):
2 i = 1
3 eAJMfVcq = {1}
4 while len(eAJMfVcq) < n:
5 i += 1
6 if target - i not in eAJMfVcq:
7 eAJMfVcq.add(i)
8 return sum(eAJMfVcq)

11 / 35



LLMs’ Robustness

LLMs for code (LLMCs)
• When Qwen2.5-Coder and SemCoder

are presented with this semantically
equivalent function, both models fail to
provide the correct output;

• Both models also fail to construct
logically sound reasoning, even after five
rounds of interactive feedback.

1 def minPossibleSum(n, target):
2 i = 1
3 eAJMfVcq = {1}
4 while len(eAJMfVcq) < n:
5 i += 1
6 if target - i not in eAJMfVcq:
7 eAJMfVcq.add(i)
8 return sum(eAJMfVcq)

11 / 35



In this work

• Conduct a manual expert evaluation to assess whether LLMs’ code output
predictions are based on logically sound reasoning, flawed reasoning, or
mere guesses.

• Evaluate LLMs’ output prediction stability across five different
semantics-preserving code mutations.
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Semantics-Preserving Code Mutation
Given a program P that is syntactically well-formed program, and it is semantically
consistent with the test suite, i.e.,

∀(t i
in, t i

out) ∈ T : P(t i
in) = t i

out .

A semantics-preserving code mutation is a syntactic program transformation to P that
generates a new program Pm by syntactically replacing a subset S1 of P ’s statements
(S1 ⊆ P) with another set of statements S2, such that

Pm = ((P \ S1) ∪ S2)

and Pm is syntactically well-formed and semantically consistent with the original
specification:

∀(t i
in, t i

out) ∈ T : Pm(t i
in) = t i

out .
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Semantics-Preserving Code Mutations

We introduce five semantics-preserving code mutations designed to syntactically
modify Python programs without altering their semantics:
• variable renaming;
• comparison expression mirroring;
• swapping if-else statements;
• loop conversion
• partial loop unrolling.
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Variable renaming

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if n % 2 == 0:
5 sum += n
6 else:
7 sum += 0
8 return sum

1 def f(nums):
2 uoWIfiQc = 0
3 for n in nums:
4 if n % 2 == 0:
5 uoWIfiQc += n
6 else:
7 uoWIfiQc += 0
8 return uoWIfiQc
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Comparison Expression Mirroring

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if n % 2 == 0:
5 sum += n
6 else:
7 sum += 0
8 return sum

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if 0 == n % 2:
5 sum += n
6 else:
7 sum += 0
8 return sum
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Swap If-Else Statements

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if n % 2 == 0:
5 sum += n
6 else:
7 sum += 0
8 return sum

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if not n % 2 == 0:
5 sum += 0
6 else:
7 sum += n
8 return sum
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For-to-While Loop Conversion

1 def f(nums):
2 sum = 0
3 for n in nums:
4 if n % 2 == 0:
5 sum += n
6 else:
7 sum += 0
8 return sum

1 def f(nums):
2 sum = 0
3 i = 0
4 while i < len(nums):
5 n = nums[i]
6 if n % 2 == 0:
7 sum += n
8 else:
9 sum += 0

10 i += 1
11 return sum
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Partial Loop Unrolling

1 def f(nums):
2 sum = 0
3 i = 0
4 while i < len(nums):
5 n = nums[i]
6 if n % 2 == 0:
7 sum += n
8 else:
9 sum += 0

10 i += 1
11 return sum

1 def f(nums):
2 sum, i = 0, 0
3 while i < (len(nums)-1):
4 n = nums[i]
5 if n % 2 == 0:
6 sum += n
7 else:
8 sum += 0
9 i += 1

10 if len(nums) > i:
11 n = nums[i]
12 if n % 2 == 0:
13 sum += n
14 else:
15 sum += 0
16 i += 1
17 return sum
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LLM-Based Program Output Prediction

Prompt
Generator LLM

Prompt

DeciderFeedback

Answer

Program
+

Specification

Correct
Output

Predicted
+

Reasoning
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Prompt Example
Simulate the Execution: You are given
a Python function and an assertion
containing a function input. Complete
the assertion containing the execution
output corresponding to the given input
in [ANSWER] and [/ANSWER] tags.

For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]

Please complete the assertion
and explain your reasoning for
your prediction, using no more
than 1000 tokens.

```python
def f(nums):

# python function
assert f([1, 2, 3, 4, 5]) == ???
```
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Prompt Example for Feedback

Your previous output prediction was INCORRECT!
Try again. Complete the initial program
assertion containing the execution output
corresponding to the given input in [ANSWER]
and [/ANSWER] tags.
For example, the answer to
'''assert sumEvenNumbers([1,2,3,4])==???'''
would be
[ANSWER]
assert sumEvenNumbers([1,2,3,4]) == 6
[/ANSWER]

Please complete the assertion
and explain your reasoning for
your new prediction, using no
more than 1000 tokens.

```python
def f(nums):

# python function
assert f([1, 2, 3, 4, 5]) == ???
```
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Experimental Setup

• Evaluation Benchmarks:
• LiveCodeBench [Jain et al., 2024] contains 479 programs submitted to

programming contests across competition platforms, such as LeetCode;

• CruxEval [Gu et al., 2024] contains 800 functions generated by CodeLlama,
each accompanied by a set of input-output examples for evaluation.

• For each program mutation, we generate a separate transformed version of the
benchmark, producing up to two mutated variants per program, each containing at
most one mutation;

• We also check that the semantics of the original program is preserved in the
mutated versions.
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Experimental Setup

• Large Language Models (LLMs): We evaluated six different LLMs.

• Five of these models are LLMCs, i.e., LLMs fine-tuned for coding tasks:
• IBM’s GraniteCode;
• Google’s CodeGemma;
• Alibaba’s Qwen2.5-Coder;
• Mistral’s Mistral;
• SemCoder;

• The other model is a general-purpose LLM: Meta’s Llama3.2;
• Experiments were conducted using a timeout of 90s.
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Analysis of LLMs’ Reasoning About Code

Large Language Models (LLMs) CodeGemma GraniteCode Qwen2.5-Coder Mistral SemCoder Llama3.2

% Failed Predictions 61.38 65.97 38.00 68.06 51.98 58.87
% Correct Predictions 38.62 34.03 62.00 31.95 48.01 41.13
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RQ1. Are Large Language Models (LLMs) truly reasoning about code semantics, or
merely guessing likely answers?
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Large Language Models (LLMs) CodeGemma GraniteCode Qwen2.5-Coder Mistral SemCoder Llama3.2

% Failed Predictions 61.38 65.97 38.00 68.06 51.98 58.87
% Correct Predictions 38.62 34.03 62.00 31.95 48.01 41.13

% Correct Guesses based on flawed reasoning 51.35 42.34 12.79 49.67 16.08 60.90
% Correct Predictions based on sound reasoning (> 1 it.) 3.78 14.72 8.76 – – 14.22
% Correct Predictions based on sound reasoning (= 1 it.) 44.87 42.93 78.45 50.33 83.92 24.87

RQ2. Does the interactive querying process help LLMs arrive at correct predictions
supported by logically sound reasoning?
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Robustness to Semantics-Preserving Mutations

LiveCodeBench

Large Language Models (LLMs) F2W MCE Original Benchmark RV SIE UL
CodeGemma 34.0 (–5) 33.0 (–6) 38.6 34.0 (–5) 34.0 (–5) 32.0 (–7)
GraniteCode 34.0 (+0) 34.0 (+0) 34.0 34.0 (+0) 33.0 (–1) 27.0 (–7)
Llama3.2 40.0 (–1) 38.0 (–3) 41.1 35.0 (–6) 34.0 (–7) 33.0 (–8)
Mistral 30.0 (–2) 33.0 (+1) 32.0 32.0 (+0) 33.0 (+1) 33.0 (+1)
Qwen2.5-Coder 57.0 (–5) 60.0 (–2) 62.0 62.0 (+0) 55.0 (–7) 60.0 (–2)
SemCoder 44.0 (–4) 48.0 (+0) 48.0 49.0 (+1) 42.0 (–6) 48.0 (+0)

Table 1: Output prediction correction rate of each LLM on LiveCodeBench when applying different
code mutations: converting for to while loops (F2W), mirroring comparison expressions (MCE), renaming
variables (RV), swap if-else statements (SIE), and unroll loops (UL).
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Robustness to Semantics-Preserving Mutations

CruxEval

Large Language Models (LLMs) F2W MCE Original Benchmark RV SIE UL
CodeGemma 33.0 (–2) 34.0 (–1) 35 32.0 (–3) 34.0 (–1) 32.0 (–3)
GraniteCode 29.0 (–3) 30.0 (–2) 32 32.0 (+0) 30.0 (–2) 31.0 (–1)
Llama3.2 29.0 (+1) 29.0 (+1) 28 31.0 (+3) 29.0 (+1) 23.0 (–5)
Mistral 23.0 (–1) 24.0 (+0) 24 23.0 (–1) 22.0 (–2) 25.0 (+1)
Qwen2.5-Coder 56.0 (–4) 62.0 (+2) 60 61.0 (+1) 52.0 (–8) 62.0 (+2)
SemCoder 51.0 (+0) 51.0 (+0) 51 50.0 (–1) 46.0 (–5) 47.0 (–4)

Table 2: Output prediction correction rate of each LLM on CruxEval when applying different code
mutations: converting for to while loops (F2W), mirroring comparison expressions (MCE), renaming
variables (RV), swap if-else statements (SIE), and unroll loops (UL).
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Robustness to Semantics-Preserving Mutations

RQ3. Do different code mutations lead LLMs to produce different predictions for the
same program?

• It is crucial to analyse the set of distinct output predictions generated under
different mutations to assess the stability of each LLM.

• This allows us to determine whether the models maintain consistent reasoning
and predictions across semantically equivalent program variants.
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Robustness to Semantics-Preserving Mutations

LiveCodeBench

LLMs Original Benchmark Original + F2W Original + MCE Original + RV Original + SIE Original + UL Original + All Mutations
CodeGemma 38.6% 47.2 (+8.6) 52.2 (+13.6) 51.8 (+13.2) 52.6 (+14.0) 42.0 (+3.3) 66.8 (+28.2)
GraniteCode 34.0% 37.6 (+3.5) 39.5 (+5.4) 43.2 (+9.2) 38.4 (+4.4) 34.7 (+0.6) 46.8 (+12.7)
Llama3.2 41.1% 50.7 (+9.6) 50.9 (+9.8) 56.6 (+15.4) 49.3 (+8.1) 43.4 (+2.3) 64.9 (+23.8)
Mistral 31.9% 35.3 (+3.3) 35.7 (+3.8) 40.1 (+8.1) 36.1 (+4.2) 33.4 (+1.5) 44.7 (+12.7)
Qwen2.5-Coder 62.0% 75.6 (+13.6) 80.2 (+18.2) 82.9 (+20.9) 78.1 (+16.1) 67.6 (+5.6) 93.1 (+31.1)
SemCoder 48.0% 63.0 (+15.0) 66.6 (+18.6) 71.6 (+23.6) 62.8 (+14.8) 52.0 (+4.0) 84.6 (+36.5)

Table 3: Output prediction stability of LLMs on LiveCodeBench when running a portfolio approach,
applying different code mutations: converting for to while loops (F2W), mirroring comparison expressions
(MCE), renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).
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Robustness to Semantics-Preserving Mutations

CruxEval

LLMs Original Benchmark Original + F2W Original + MCE Original + RV Original + SIE Original + UL Original + All Mutations
CodeGemma 34.6% 38.6 (+4.0) 39.8 (+5.1) 44.1 (+9.5) 40.9 (+6.2) 35.9 (+1.2) 49.2 (+14.6)
GraniteCode 32.4% 34.2 (+1.9) 34.8 (+2.4) 38.6 (+6.2) 34.5 (+2.1) 33.1 (+0.8) 40.9 (+8.5)
Llama3.2 28.0% 33.5 (+5.5) 32.6 (+4.6) 43.5 (+15.5) 33.2 (+5.2) 30.1 (+2.1) 48.1 (+20.1)
Mistral 24.1% 24.9 (+0.8) 25.6 (+1.5) 28.2 (+4.1) 26.0 (+1.9) 24.5 (+0.4) 30.4 (+6.3)
Qwen2.5-Coder 59.8% 63.2 (+3.5) 64.8 (+5.0) 70.4 (+10.6) 64.1 (+4.4) 61.9 (+2.1) 73.4 (+13.6)
SemCoder 50.6% 55.2 (+4.6) 55.8 (+5.1) 61.8 (+11.1) 56.6 (+6.0) 52.2 (+1.6) 65.5 (+14.9)

Table 4: Output prediction stability of LLMs on CruxEval when running a portfolio approach, applying
different code mutations: converting for to while loops (F2W), mirroring comparison expressions (MCE),
renaming variables (RV), swap if-else statements (SIE), and unroll loops (UL).
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Robustness to Semantics-Preserving Mutations

RQ4. Are LLMs robust in understanding code against semantics-preserving mutations?
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Robustness to Semantics-Preserving Mutations

RQ4. Are LLMs robust in understanding code against semantics-preserving mutations?

LLMs LiveCodeBench + Mutations | CruxEval + Mutations
CodeGemma 66.8 (+28.2) 49.2 (+14.6)
GraniteCode 46.8 (+12.7) 40.9 (+8.5)
Llama3.2 64.9 (+23.8) 48.1 (+20.1)
Mistral 44.7 (+12.7) 30.4 (+6.3)
Qwen2.5-Coder 93.1 (+31.1) 73.4 (+13.6)
SemCoder 84.6 (+36.5) 65.5 (+14.9)
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Takeaway Message

• We investigate the reasoning capabilities and semantic robustness of Large
Language Models (LLMs) in the context of program output prediction;

• We examine whether the correct outputs are grounded in sound reasoning and
whether LLMs are robust to semantics-preserving code mutations;

• Our evaluation using six LLMs, reveals two key findings:

• Through expert human analysis, we show that correct predictions are frequently the
result of flawed reasoning.

• e.g., CodeGemma and Mistral achieve correct answers in 32-39% of the cases, yet
50% of those are not grounded in valid semantic reasoning.

• LLMs often change predictions in response to our code mutations, indicating limited
robustness in their semantic understanding.
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Thank you!
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